浏览全部资源
扫码关注微信
广州大学 化学化工学院,广东 广州,510006
收稿日期:2013-08-20,
修回日期:2013-09-17,
纸质出版日期:2014-01-03
移动端阅览
陈旖勃, 潘英娇, 梁敏华, 冯静容. 亚微米级Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup>荧光粉的溶胶燃烧法合成与表征[J]. 发光学报, 2014,35(1): 73-78
CHEN Yi-bo, PAN Ying-jiao, LIANG Min-hua, FENG Jing-rong. Sol-combustion Synthesis and Analysis of Submicron Sized Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup> Phosphor for White Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(1): 73-78
陈旖勃, 潘英娇, 梁敏华, 冯静容. 亚微米级Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup>荧光粉的溶胶燃烧法合成与表征[J]. 发光学报, 2014,35(1): 73-78 DOI: 10.3788/fgxb20143501.0073.
CHEN Yi-bo, PAN Ying-jiao, LIANG Min-hua, FENG Jing-rong. Sol-combustion Synthesis and Analysis of Submicron Sized Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup> Phosphor for White Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(1): 73-78 DOI: 10.3788/fgxb20143501.0073.
用溶胶燃烧法在1 200 ℃制备了亚微米级Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
荧光粉,并对其进行了物相结构、形貌、光致发光性质和热猝灭性质的表征。与传统高温固相法制备的样品相比,溶胶燃烧法不但降低了制备温度,而且制备的Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
荧光粉的形貌也有所改善。发光性质测试结果表明,亚微米级Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
荧光粉的发光峰值相比于高温固相法样品有约10 nm的红移,而且样品的热猝灭性质也优于高温固相法样品。
Submicron sized Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor was prepared by sol-combustion (SC) method. The phase-forming
morphology
photoluminescence and thermal quenching properties of phosphor were investigated. The results confirm that the Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor can be prepared by SC method at 1ower temperature
and the morphology is much more uniform than the samples prepared by solid state (SS) method. Photoluminescence measurements show that the emission of the submicron sized Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor presents a ~10 nm red shift compared with the SS sample
and the thermal quenching of the submicron sized Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor is obviously weaker.
Nakamura S, Fasol G. The Blue Laser Diode: GaN Based Light Emitters and Lasers[M]. Berlin: Springer, 1997.[2] Holonyak N, Bevaqua S F. Coherent (visible) light emission from Ga(As1-xPx)[J]. Appl. Phys. Lett., 1962, 1(4):82-83.[3] Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures[J]. Jpn. J. Appl. Phys., 1995, 34:L797-799.[4] Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes[J]. Appl. Phys. Lett., 1995, 67(13):1868-1870.[5] Sheu J K, Chang S J, Kuo C H, et al. White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors[J]. IEEE Photon. Technol. Lett., 2003, 15(1):18-20.[6] Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:The system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi)[J]. Chem. Phys. Lett., 2004, 387(1):2-6.[7] Hreniak D, Strezk W, Mazur P, et al. Luminescence properties of Tb3+:Y3Al5O12 nano cystallites prepared by the sol-gel method[J]. Opt. Mater., 2004, 26:117-121.[8] Kuang J Y, Liu Y L, Zhang J X, et al. Solvothermal synthesis of nano-sphere-like La2O2S:Eu3+ phosphor[J]. J. Chem. Chin. Univ.(高等学校化学学报), 2005, 26(5):822-824 (in Chinese).[9] Chen Y B, Wang J, Gong M L, et al. TAG:Ce3+ phosphors prepared by a novel sol-combustion method for application in InGaN-based white LEDs[J]. Chem. Lett., 2007, 36(6):760-761.[10] Liu Y H, Zhuang W D, Hu Y S, et al. Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications[J]. J. Alloys Compd., 2010, 504(2):488-492.[11] Suzuki Y, Kakihana M, Shimomura Y, et al. Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications[J]. J. Mater. Sci., 2008, 43(7):2213-2216.[12] Yu L X, Song H W, Lu S Z, et al. Thermal quenching characteristics in LaPO4:Eu nanoparticles and nanowires[J]. Mater. Res. Bull., 2004, 39(13):2083-2088.[13] Liu Y F, Zhang X, Hao Z D, et al. Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)-Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency[J]. J. Phys. D:Appl. Phys., 2011, 44(7):0754021-1-6.[14] Wu Y F, Chan Y H, Nien Y T, et al. Crystal structure and optical performance of Al3+ and Ce3+ codoped Ca3Sc2Si3O12 green phosphors for white LEDs[J]. J. Am. Ceram. Soc., 2013, 96(1):234-240.[15] Qiu G M, Geng X J, Chen Y J, et al. Optical property and soft chemical preparation methods of nanoscale rare earth luminescent materials[J]. J. Chin. Soc. Rare Earths (中国稀土学报), 2003, 21:109-114 (in Chinese).[16] Dorenbos P. Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds[J]. J. Phys.:Condens. Matter, 2005, 17(50):8103-8111.[17] Van der Kolk E, Dorenbos P, De Haas J T M, et al. Thermally stimulated electron delocalization and luminescence quenching of Ce impurities in GdAlO3[J]. Phys. Rev. B, 2005, 71(4):045121-1-5.[18] Lee Y C, Chang Y S, Teoh L G, et al., The effects of the nanostructure of mesoporous TiO2 on optical band gap energy[J]. J. Sol-Gel. Sci. Technol., 2010, 56(1):33-38.[19] Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternaryⅠ-Ⅲ-Ⅵ2 semiconductor nano crystals[J]. J. Appl. Phys., 2009, 105(7):073106-1-6.[20] Wang Y, Ouyang G, Wang L L, et al. Size-and composition-induced band-gap change of nanostructured compound of Ⅱ-Ⅵ semiconductors[J]. Chem. Phys. Lett., 2008, 463(4-6):383-386.
0
浏览量
37
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构