浏览全部资源
扫码关注微信
1. 南华大学 核科学技术学院,湖南 衡阳,421001
2. 南华大学 数理学院,湖南 衡阳,421001
收稿日期:2013-09-09,
修回日期:2013-09-26,
纸质出版日期:2013-12-10
移动端阅览
李伟军, 向东. 亚波长之字形MIM等离子波导宽带滤波器[J]. 发光学报, 2013,34(12): 1657-1661
LI Wei-jun, XIANG Dong. A Broadband Plasmonic Filter of Subwavelength Zigzag-shaped MIM Waveguides[J]. Chinese Journal of Luminescence, 2013,34(12): 1657-1661
李伟军, 向东. 亚波长之字形MIM等离子波导宽带滤波器[J]. 发光学报, 2013,34(12): 1657-1661 DOI: 10.3788/fgxb20133412.1657.
LI Wei-jun, XIANG Dong. A Broadband Plasmonic Filter of Subwavelength Zigzag-shaped MIM Waveguides[J]. Chinese Journal of Luminescence, 2013,34(12): 1657-1661 DOI: 10.3788/fgxb20133412.1657.
运用时域有限差分(FDTD)方法数值研究了一种亚波长之字形金属-绝缘体-金属(MIM)等离子波导结构的传输属性。之字形波导在连续两个拐角可向外延伸出1~4个短切口。每个切口独立构成一个谐振腔,谐振波长近似与切口深度成线性正比,而与切口方向无关。当任意一个切口满足谐振条件时,该波导结构在对应波长的透射率均趋近于0。随着同深度切口数目的增加,禁带波长区域逐渐展宽,形成一个良好的宽带滤波器。
The transmission of a subwavelength zigzag-shaped metal-insulator-metal (MIM) plasmonic waveguide structure was numerically researched by using the finite-difference time-domain (FDTD) method. The zigzag-shaped waveguide has two bending corners
where waveguide can extend out from one to four cuts. Each cut can be looked as a self-existent resonant cavity. The resonant wavelength is approximately linear proportional to the depth of cut
and independent on the direction of cut. When any cut satisfies with the resonant condition
the transmission of the waveguide structure is close to zero at the resonant wavelength. With the increase of number of the same depth of cuts
the wavelength region of band gap is broaden gradually
thus a good broadband filter is formed.
Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization[J]. Phys. Rev. B, 2006, 73(3):035407-1-9.[2] Li G Q, Li X H, Yang H D, et al. Fabrication of colorful metals with femtosecond laser pulses[J]. Chin. Opt.(中国光学), 2011, 4(1):72-76 (in Chinese).[3] Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Opt. Exp., 2005, 13(24):9652-9659.[4] Zhao H, Guang X, Huang J. Novel optical directional coupler based on surface plasmon polaritons[J]. Phys. E, 2008, 40(10):3025-3029.[5] Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Opt. Exp., 2005, 13(26):10795-10800.[6] Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons[J]. Opt. Commun., 2006, 259(2):690-695.[7] Hossieni A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Opt. Exp., 2006, 14(23):11318-11323.[8] Liu J, Chen B X, Yang H M. Ion-exchange single-mode stripe waveguide for excitation of surface plasma wave[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(10):2342-2348 (in Chinese).[9] Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Opt. Lett., 2008, 33(23):2874-2876.[10] Yuan W, Sang M H, Guo Q, et al. Research on narrow band filter of magnetic fluid based on optical waveguide with submillimeter scale[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(11):2618-2622 (in Chinese).[11] Zhai X, Wen S C, Xiang D, et al. A subwavelength plasmonic waveguide filter with a ring resonator[J]. J. Nanomater., 2013, Article ID 484207, 6 pages, http://dx.doi.org/10.1155/2013/484207.[12] Wang Q R, Li S H, Zheng S L, et al. SPP filters and selectors using nanoscale metal waveguide arrays with bends[J]. Opt. Commun., 2013, 309:282-285.[13] Zheng G G, Chen Y Y, Xu L H, et al. Metal-insulator-metal waveguide-based band-pass filter with circular ring resonator containing Kerr nonlinear medium[J]. Opt. Commun., 2013, 305:164-169.[14] Xiang D, Wang L L, Wang L, et al. Optical transmission through double-layer compound metallic gratings with subwavelength slits[J]. J. Mod. Opt., 2012, 59(15):1342-1348.[15] Gray S K, Kupka T. Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders[J]. Phys. Rev. B, 2003, 68(4):045415-1-11.[16] Xiang D, Wang L L, Li X F, et al. Transmission resonances of compound metallic gratings with two subwavelength slits in each period[J]. Opt. Exp., 2011, 19(3):2187-2192.
0
浏览量
132
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构