浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
收稿日期:2013-07-12,
修回日期:2013-08-16,
纸质出版日期:2013-12-10
移动端阅览
张金胜, 宁永强, 张金龙, 张建伟, 张建, 王立军. 808 nm垂直腔面发射激光器列阵的温度特性分析[J]. 发光学报, 2013,34(12): 1636-1640
ZHANG Jin-sheng, NING Yong-qiang, ZHANG Jin-long, ZHANG Jian-wei, ZHANG Jian, WANG Li-jun. Temperature Characteristic Analysis of 808 nm Vertical Cavity Surface Emitting Laser Arrays[J]. Chinese Journal of Luminescence, 2013,34(12): 1636-1640
张金胜, 宁永强, 张金龙, 张建伟, 张建, 王立军. 808 nm垂直腔面发射激光器列阵的温度特性分析[J]. 发光学报, 2013,34(12): 1636-1640 DOI: 10.3788/fgxb20133412.1636.
ZHANG Jin-sheng, NING Yong-qiang, ZHANG Jin-long, ZHANG Jian-wei, ZHANG Jian, WANG Li-jun. Temperature Characteristic Analysis of 808 nm Vertical Cavity Surface Emitting Laser Arrays[J]. Chinese Journal of Luminescence, 2013,34(12): 1636-1640 DOI: 10.3788/fgxb20133412.1636.
为了研究温度对808 nm InGaAlAs垂直腔面发射激光器(VCSEL)列阵输出特性的影响,通过变温塞耳迈耶尔方程计算了InGaAlAs量子阱VCSEL的温度漂移系数。采用非闭合环结构,制备了22 的808 nm垂直腔面发射激光器列阵,每个单元的出光口径为60 m。通过热沉温度调节,对不同温度下的列阵激射波长、光功率以及阈值电流进行了测量。在温度为20 ℃、脉宽为50 s、重复频率为100 Hz的脉冲条件下,列阵的最大输出功率达到56 mW,中心光谱值为808.38 nm,光谱半宽为2.5 nm,连续输出功率达到22 mW。通过变温测试,发现输出功率在50 ℃以上衰减剧烈,列阵的温漂系数为0.055 nm/℃。实验测得的温漂系数与理论值保持一致。
In order to study the output characteristics of 808 nm InGaAlAs vertical cavity surface emitting laser (VCSEL) array at different temperature
the InGaAlAs VCSEL temperature shift is calculated under the temperature-dependent Sellmeier equation. 22 arrays of 808 nm VCSEL are fabricated with non-closed structure. Each emitter diameter is 60 m. Lasing wavelength
optical power and the threshold current are measured by changing the temperature of heat sink. The maximum output power reaches 56 mW in the pulse width of 50 s
and the repetition frequency of 100 Hz at 20 ℃. The central wavelength is 808.38 nm
and the full width at half maximum is 2.5 nm
continuous output power reaches 22 mW
the output power decreases rapidly above 50 ℃
the temperature shift is 0.055 nm/℃. Experimental temperature shift is consistent with the theoretical value.
Kenichi I. Vertical-cavity surface-emitting laser: Its conception and evolution[J]. Jpn. J. Appl. Phys., 2008, 47(1):1-10.[2] Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(1):17-23 (in Chinese).[3] Seurin J F, Xu G, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays[J]. SPIE, 2009, 7229:722903-1-11.[4] Lyu L, Zhang K, Dai J J, et al. Self-mixing velocimetry based on verical-cavity surface-emitting laser[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(1):23-28 (in Chinese).[5] Hao Y Q, Ma J L, Yan C L, et al. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL[J]. Laser Phys. Lett., 2013, 10(5):055003-1-3.[6] Hao Y Q, Luo Y, Feng Y, et al. Large aperture vertical cavity surface emitting laser with distributed-ring contact[J]. Appl. Opt., 2011, 50(7):1034-1037.[7] Hao Y Q, Shang C Y, Feng Y, et al. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure[J]. Laser Phys., 2011, 21(2):376-378.[8] Seurin J F, Xu G, Guo B, et al. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications[J]. SPIE, 2011, 7952:79520G-1-10.[9] Van L R, Xiong Y, Watkins L S, et al. High power 808 nm VCSEL arrays for pumping of compact pulsed high energy Nd:YAG lasers operating at 946 nm and 1 064 nm for blue and UV light generation[J]. SPIE, 2011, 7912:79120Z-1-7.[10] Van Leeuwen R, Xiong Y, Seurin J F, et al. High-power vertical-cavity surface-emitting lasers for diode pumped solid-state lasers[J]. SPIE, 2012, 8381:838101-1-7.[11] Zhang Y, Ning Y, Zhang L, et al. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs[J]. Opt. Exp., 2011, 19(13):12569-12581.[12] Zhang Y, Ning Y, Zhang J, et al. Structural design of 808 nm InGaAlAs vertical-cavity surface-emitting laser[J]. Chin. J. Lasers (中国激光), 2011, 38(9):0902007-1-6 (in Chinese).[13] Kim J P, Sarangan A M. Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs[J]. Opt. Lett., 2007, 32(5):536-538.[14] Talghader J, Smith J S. Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities[J]. Appl. Phys. Lett., 1995, 66(3):335-337.[15] Yu S F. Analysis and Design of Vertical Cavity Surface Emitting Lasers [M]. New York: Wiley, 2003:194-197.[16] Koechner W. Solid-state Laser Engineering[M]. Berlin: Springer, 2006:57-59.[17] Shan X N, Liu Y, Cao J S. 808 nm kW-output high-efficiency diode laser sources[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(2):452-456 (in Chinese).[18] Zhu H B, Hao M M, Liu Y, et al. 808 nm high brightness module of fiber coupled diode laser[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(8):1684-1690 (in Chinese).
0
浏览量
146
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构