浏览全部资源
扫码关注微信
集成光电子学国家重点联合实验室吉林大学实验区 吉林大学电子科学与工程学院,吉林 长春,130012
收稿日期:2013-08-15,
修回日期:2013-10-14,
纸质出版日期:2013-12-10
移动端阅览
许阳, 康喆, 贾志旭, 刘来, 赵丹, 秦冠仕, 秦伟平. 基于金纳米棒可饱和吸收体的被动调<em>Q</em>掺铒光纤激光器[J]. 发光学报, 2013,34(12): 1631-1635
XU Yang, KANG Zhe, JIA Zhi-xu, LIU Lai, ZHAO Dan, QIN Guan-shi, QIN Wei-ping. Passively <em>Q</em>-switched Er-doped Fiber Lasers by Using Gold Nanorods as Saturable Absorbers[J]. Chinese Journal of Luminescence, 2013,34(12): 1631-1635
许阳, 康喆, 贾志旭, 刘来, 赵丹, 秦冠仕, 秦伟平. 基于金纳米棒可饱和吸收体的被动调<em>Q</em>掺铒光纤激光器[J]. 发光学报, 2013,34(12): 1631-1635 DOI: 10.3788/fgxb20133412.1631.
XU Yang, KANG Zhe, JIA Zhi-xu, LIU Lai, ZHAO Dan, QIN Guan-shi, QIN Wei-ping. Passively <em>Q</em>-switched Er-doped Fiber Lasers by Using Gold Nanorods as Saturable Absorbers[J]. Chinese Journal of Luminescence, 2013,34(12): 1631-1635 DOI: 10.3788/fgxb20133412.1631.
利用种子诱导生长法制备了长径比为5的金纳米棒,测量了它的吸收谱,结果表明该纳米棒具有较宽的吸收带(800~1 600 nm)。进一步测量了它的非线性吸收性质,结果表明它在1.56 m波长处具有可饱和吸收特性,有望被用于实现被动调
Q
脉冲激光的输出。将该可饱和吸收体置于掺铒光纤激光器腔内,当泵浦功率增至30 mW时开始有稳定的调
Q
脉冲激光输出,输出激光的工作波长为1.56 m。当泵浦功率为205 mW时,可获得的最大输出功率约6.9 mW,脉冲能量达219 nJ。研究结果表明,这种新型可饱和吸收体在脉冲激光领域具有广阔的应用前景。
The Au Nano-ropes (AuNRs) with aspect ratio of ~5 were synthesized through seed-mediated growth. We measured the absorption spectrum of the AuNRs and the AuNRs had a broad absorption band (800~1 600 nm). Furthermore
we measured the nonlinear absorption of the AuNRs and the result indicated that the AuNRs could be used to realize saturable absorption around 1.56 m. Therefore
passively
Q
-switching could be achieved by using them. By inserting the AuNRs into the Er-doped fiber laser cavity
stable
Q
-switched pulses were achieved for a threshold pump power of 30 mW
and the emission wavelength was 1.56 m. The highest output power of about 6.9 mW and the pulse energy as high as 219 nJ were obtained when the pump power was increased to 205 mW. Our results show the AuNRs are promising saturable absorber(SAs) for pulsed lasers.
Liu J, Wu S D, Wang K, et al. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chin. J. Lasers (中国激光), 2011, 38(8):0802001-1-5 (in Chinese).[2] Xing L, Feng X, Zhang L, et al. Stimulated Brillouin scattering hybrid Q-switched Er-doped fiber laser[J]. Chin. J. Lasers (中国激光), 2008, 35(3):338-342 (in Chinese).[3] Liu L, Cui J W, Li W J, et al. Yb3+-doped double-clad quasi-continuous wave fiber laser pumped by laser diode[J]. Chin. Opt.(中国光学), 2012, 5(6):663-670 (in Chinese).[4] Mei Y S, Fu X H, Yang Y L. Design and preparation of optical films for fiber lasers[J]. Chin. Opt.(中国光学), 2011, 4(3):299-304 (in Chinese).[5] Feng D J, Huang W Y, Ji P Y, et al. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng.(光学 精密工程), 2013, 21(5):1097-1101 (in Chinese).[6] Jiang T, Xu Y, Tian Q J, et al. Passively Q-switching induced by gold nanocrystals[J]. Appl. Phys. Lett., 2012, 101:151122-1-4.[7] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Appl. Phys. Lett., 2011, 98(7):073106-1-3.[8] Escalante-Zarate L, Barmenkov Y O, Kolpakov S A, et al. Smart Q-switching for single-pulse generation in an erbium-doped fiber laser[J]. Opt. Exp., 2011, 20(4):4397-4402.[9] Wang Z P, Cheng X F, Han S J, et al. Actively Q-switched pulse laser from LD end-pumped Nd:LiGd(MoO4)2 crystals[J]. Opt. Precision Eng.(光学 精密工程), 2013, 21(4):835-840 (in Chinese).[10] Yang W Q, Hou J, Zhang B, et al. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 m[J]. Appl. Opt., 2012, 51(23):5664-5667.[11] Liu L, Zheng Z, Zhao X, et al. Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber[J]. Opt. Commun., 2012, 294:267-270.[12] Kuang Q Q, Sang M H, Nie Y Y, et al. Research on rational harmonic mode-locked phenomenon of passively mode-locked erbium-doped fiber laser[J]. Opt. Precision Eng.(光学 精密工程), 2009, 17(11):2719-2723 (in Chinese).[13] Pan B F, Cui D X, XU P, et al. Preparation of gold nanorods with aspect ratio 2-5 by using seed mediated growth method[J]. J. Mat. Sci. Eng.(材料科学与工程学报), 2007, 25(3):333-335 (in Chinese).[14] Yang C E, Zhou J, Li X, et al. Surface enhanced Raman scattering characteristics of gold-nanoparticles-doped DNA-CTMA-DPFP film[J]. Chin. J. Lumin.(发光学报), 2013, 34(3):383-387 (in Chinese).[15] Ke S L, Kan C X, Mo B, et al. Research progress on the optical properties of gold nanorods[J]. Acta Phys. -Chim. Sinica (物理化学学报), 2012, 28(6):1275-1290 (in Chinese).[16] Wang T Y, Halaney D, Ho D, et al. Two-photon luminescence properties of gold nanorods[J]. Biomed. Opt. Exp., 2013, 4(4):584-595.
0
浏览量
74
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构