浏览全部资源
扫码关注微信
燕山大学 电气工程学院,河北 秦皇岛,066004
收稿日期:2013-07-01,
修回日期:2013-08-15,
纸质出版日期:2013-12-10
移动端阅览
王志斌, 张骞, 张健, 刘丽君. 基于表面等离子激元的双金属光栅结构提高LED光提取效率的研究[J]. 发光学报, 2013,34(12): 1624-1630
WANG Zhi-bin, ZHANG Qian, ZHANG Jian, LIU Li-jun. Improvement of LED Light Emitting Efficiency by Using Double Metal Gratings[J]. Chinese Journal of Luminescence, 2013,34(12): 1624-1630
王志斌, 张骞, 张健, 刘丽君. 基于表面等离子激元的双金属光栅结构提高LED光提取效率的研究[J]. 发光学报, 2013,34(12): 1624-1630 DOI: 10.3788/fgxb20133412.1624.
WANG Zhi-bin, ZHANG Qian, ZHANG Jian, LIU Li-jun. Improvement of LED Light Emitting Efficiency by Using Double Metal Gratings[J]. Chinese Journal of Luminescence, 2013,34(12): 1624-1630 DOI: 10.3788/fgxb20133412.1624.
为了提高GaN基LED的光提取效率,构建了一种在金属银膜上下表面分别刻蚀光栅结构的双光栅LED模型。利用时域有限差分法(FDTD)进行数值模拟,比较了无银膜、无光栅、单光栅、双光栅模型下LED的光提取效率。结果表明:在光栅周期为300 nm,占空比为0.23,银膜厚度为30 nm,光源深度为150 nm时,光提取效率较单光栅结构提高了6倍,较无光栅结构提高了16倍。
In order to improve the light emitting efficiency of GaN-based LED
a double-grating structure was established by etching grating on both sides of silver metal film. A numerical simulation was conducted using the finite difference time domain method (FDTD). The light extraction efficiency in different patterns was compared
including without-silver-film pattern
without-grating pattern
single-grating pattern and double-grating pattern. When the grating period is 300 nm
duty cycle is 0.23
silver film thickness is 30 nm and light source depth is 150 nm
the light extraction efficiency of the double-grating structure is improved by 6 times than the single-grating structure
and 16 times than the structure without grating.
Koike M, Shibata N, Kato H, et al. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications[J]. IEEE J. Sel. Top. Quant. Elect., 2002, 8(2):271-277.[2] Kim D H, Cho C O, Roh Y G, et al. Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns[J]. Appl. Phys. Lett., 2005, 87(20):231-233.[3] Gong H B, Hao X P, Xia W, et al. Enhanced extraction efficiency of red light emitting diode via dry etching GaP using ITO as templates[J]. J. OptoelectronicsLaser (光电子激光), 2010, 21(9):1287-1290 (in Chinese).[4] Chen J, Wang Q K, Li H H. Effect of random perturbation of structural parameters on the light extraction efficiency of light emitting diodes with photonic crystal[J]. Acta Optica Sinica (光学学报), 2010, 30(1):233-236 (in Chinese).[5] Long D H, Hwang I K, Ryu S W. Design optimization of photonic crystal structure for improved light extraction of GaN LED[J]. IEEE J. Sel.Top. Quant. Elect., 2009, 15(4):1257-1263.[6] Shin Y C, Kim D H, Kim E H, et al. High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices[J]. IEEE J. Quant. Elect., 2010, 46(1):116-120.[7] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett., 1974, 26(2):163-166.[8] Matioli E, Weisbuch C. Impact of photonic crystals on LED light extraction efficiency: Approaches and limits to vertical structure designs[J]. J.Phys. D: Appl. Phys., 2010, 43(35):354005-1-22.[9] Ohtsu M, Kobayashi K, Kawazoe T, et al., Nanophotonics: Design, fabrication, and operation of nanometric devices using optical near fields[J]. IEEE J. Quant. Elect., 2002, 8(4):839-862.[10] Lin Y Z, Li K, Kong F M, et al. Comprehensive numeric study of gallium nitride light-emitting diodes adopting surface plasmon mediated light emission technique[J]. IEEE J. Quant. Elect., 2011, 17(4):942-951.[11] Liu J, Liu J, Wang Y T, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chin. Opt.(中国光学), 2011, 4(4):363-368 (in Chinese).[12] Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 1999, 83(14):2845-2848.[13] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment[J]. Phys. Chem., 2003, 10(7):668-677.[14] Chen Y Y, Tong C Z, Qin L, et al. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chin. Opt.(中国光学), 2012, 5(5):453-463 (in Chinese).[15] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift fur Physik A: Hadrons and Nuclei, 1968, 216(4):398-410.[16] Kretschmann E, Reather H. Radiative decay of non-radiative surface plasmon excited by light[J]. Zeitschrift fur Naturforschung, 1968, 23(21):35-36.[17] Gu B Y. Surface plasmon subwavelength optics: Principles and novel effects[J]. Phys.(物理), 2007, 36(4):280-287 (in Chinese).
0
浏览量
156
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构