浏览全部资源
扫码关注微信
1. 南华大学 数理学院,湖南 衡阳,421001
2. 南方电网,广东 广州,510000
3. 中山大学 太阳能系统研究所,广东 广州,510000
4. 中国电子科技集团公司 第四十八研究所,湖南 长沙,410081
收稿日期:2013-07-21,
修回日期:2013-08-21,
纸质出版日期:2013-12-10
移动端阅览
尹岚, 李达, 沈辉, 黄岳文. 利用PC2D优化高方阻均匀发射极电池的栅线电极[J]. 发光学报, 2013,34(12): 1613-1617
YIN Lan, LI Da, SHEN Hui, HUANG Yue-wen. Gridline Pattern Optimization of Solar Cell with High Sheet Resistance Homogeneous Emitters by Using PC2D[J]. Chinese Journal of Luminescence, 2013,34(12): 1613-1617
尹岚, 李达, 沈辉, 黄岳文. 利用PC2D优化高方阻均匀发射极电池的栅线电极[J]. 发光学报, 2013,34(12): 1613-1617 DOI: 10.3788/fgxb20133412.1613.
YIN Lan, LI Da, SHEN Hui, HUANG Yue-wen. Gridline Pattern Optimization of Solar Cell with High Sheet Resistance Homogeneous Emitters by Using PC2D[J]. Chinese Journal of Luminescence, 2013,34(12): 1613-1617 DOI: 10.3788/fgxb20133412.1613.
利用新型二维PC2D软件研究高方阻均匀发射极太阳能电池的栅线电极对电池性能的影响,通过对细栅线的宽度和排布方式的优化,增大填充因子,找到常规电池的效率极限。结果表明,在不采用复杂电池结构的情况下,以现有大规模生产工艺条件为基础,细栅线优化后(正面细栅线109根,线宽为40 m),在常规电池中能实现19.09%以上的效率。
In order to improve the fill factor and efficiency of the homogeneous high sheet resistance emitter solar cell
the effect of the gridline pattern on the performance of the solar cell was studied by using PC2D software. The results show that the efficiency of the solar cell can reach 19.09% after the optimization of the gridline pattern(109 gridlines with a width of 40 m). The results indicate that a high efficiency can be realized for solar cell with homogeneous emitter without employing complicated structure and fabrication process.
Rohatgi A, Meier D. Developing novel low-cost high-throughput processing techniques for 20%-efficient monocrystalline silicon solar cells[J]. Photovoltaics International, 2010, 1:87-93.[2] Ding W C. Light management in crystalline silicon solar cells[J]. Chin. Opt.(中国光学), 2013, 6(5):717-728 (in Chinese).[3] Liu H, Lu Z W, Zhu R, et al. Development and tendency of photovoltaic concentrator system[J]. Chin. Opt.(中国光学), 2008, 1(1):49-56 (in Chinese).[4] Cuevas A, Balbuena M. Thick-emitter silicon solar cells[C]//20th IEEE PVSC, Las Vegas: IEEE, 1988:429-434.[5] Cuevas A, Russell D A. Co-optimisation of the emitter region and the metal grid of silicon solar cells[J]. Prog. Photovolt: Res. Appl., 2000, 8(6):603-616.[6] Cid M, Stem N. Homogeneous gaussian profile p+-type emitters: updated parameters and metal-grid optimization[J]. Mater. Res., 2002, 5(4):427-432.[7] Snchez M C, Stem N. Phosphorus emitter and metal-grid optimization for homogeneous (n+p) and double-diffused (n++n+p) emitter silicon solar cells[J]. Mater. Res., 2009, 12(1):57-62.[8] Cuevas A, Basore P A, Giroult-Matiakowski G, et al. Surface recombination velocity of highly doped n-type silicon[J]. J. Appl. Phys., 1996, 80(6): 3370-3375.[9] Green M A. Modelling implications of recent silicon bandgap narrowing expressions[J]. Prog. Photovolt: Res. Appl., 1997, 5(4):261-263.[10] Ebong A, Renshaw, Cooper I, et al. Understanding and implementing high quality contacts to advanced emitters for high effciency solar cells[R]. Georgia Institute of Technology, Xjet Solar LTD, Israel, 2011.[11] Hersh P A, Curtis C J, Van Hest M F A M, et al. Inkjet printed metallizations for Cu(In1-xGax)Se2 photovoltaic cells[J]. Prog. Photovolt: Res. Appl., 2011, 19(8):973-976.[12] Clugston D A. PC1D version 5: 32-bit solar cell modeling on personal computers[C]//IEEE 26th Photovoltaic Specialists Conference, Anaheim: IEEE, 1997:207-210.[13] Basore P A. PC2D: A circular-reference spreadsheet solar cell device simulator[C]//37th IEEE Photovoltaic Specialists Conference, 2011:72-77.[14] Meier D L, Good E A, Garcia R A, et al. Determining components of series resistance from measurements on a finished cell[C]//4th World Conf. PVSEC, IEEE, Waikoloa, 2006:1315-1318.
0
浏览量
170
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构