浏览全部资源
扫码关注微信
1. 太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原,030024
2. 太原理工大学 新材料工程技术研究中心,山西 太原,030024
收稿日期:2013-07-19,
修回日期:2013-09-10,
纸质出版日期:2013-12-10
移动端阅览
甄慧慧, 鲁麟, 刘子超, 尚林, 许并社. 位错形态与GaN外延薄膜电阻率之间的关系[J]. 发光学报, 2013,34(12): 1607-1612
ZHEN Hui-hui, LU Lin, LIU Zi-chao, SHANG Lin, XU Bing-she. Correlation Between The Morphology of Threading Dislocations and The Origin of High-resistivity GaN[J]. Chinese Journal of Luminescence, 2013,34(12): 1607-1612
甄慧慧, 鲁麟, 刘子超, 尚林, 许并社. 位错形态与GaN外延薄膜电阻率之间的关系[J]. 发光学报, 2013,34(12): 1607-1612 DOI: 10.3788/fgxb20133412.1607.
ZHEN Hui-hui, LU Lin, LIU Zi-chao, SHANG Lin, XU Bing-she. Correlation Between The Morphology of Threading Dislocations and The Origin of High-resistivity GaN[J]. Chinese Journal of Luminescence, 2013,34(12): 1607-1612 DOI: 10.3788/fgxb20133412.1607.
利用金属有机化学气相沉积(MOCVD),通过改变生长过程中成核层退火阶段的反应室压力,在蓝宝石衬底上制得了不同阻值的GaN外延薄膜。利用原子力显微镜(AFM)、X射线衍射(XRD)和透射电子显微镜(TEM)对所生长的GaN薄膜的表面形貌、位错密度和位错形态进行了研究。结果表明,GaN的电阻率与位错形态之间存在密切联系,由此建立了模型来解释两者之间的关系。由于刃型位错附近存在负电荷,因此可为电子提供传导通道。在低阻GaN中,绝大多数位错发生弯曲和相互作用,在平行于基底方向上形成负电荷的导通通道,GaN薄膜的电导率较高。在高阻GaN中,位错生长方向垂直于基底,负电荷很难在平行于基片方向上传导,GaN薄膜的电导率很低,由此得到高阻GaN。
The high-resistivity (HR) GaN is the basis of GaN-based electronic devices. The HR-GaN films were grown by metal organic chemical vapor deposition (MOCVD) on
c
-plane sapphire substrates
using trimethyl gallium (TMGa) and NH
3
as precursors and high purity H
2
as carrier gas. GaN samples with different resistivity were prepared at various annealing pressures between 10 000 Pa and 54 200 Pa. Surface morphology
dislocation density of different resistivity of the GaN films were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The resistance of GaN increases rapidly with the annealing pressure reducing. The high-quality GaN epitaxial films have been achieved by the experimental method. With the annealing pressure reducing
the edge dislocation density significantly increases by several times
and the screw dislocation density changes. The correlation between the morphology of threading dislocations (TDs) and the origin of HR GaN films was investigated using transmission electron microscopy. It is observed that the morphology of TDs can lead to different resistivity in GaN film
and the edge-type TDs are more sensitive to the sheet resistivity than the screw-type TDs. The sheet resistivity increases by seven orders of magnitude with the increase in the edge-type TDs. The morphology of TDs determines the movement of the negative charges which leads to different resistivity of the GaN film. The TDs can work as the electronic conduction channels. In the low-resistivity GaN
almost all TDs are bent and interactive
and the electrons also move along with the channels formed by the bent TDs. In the HR-GaN
TDs are all straight and perpendicular to the sapphire
and the electrons are difficult to move in the lateral direction.
Akasaki I, Amano H. Crystal growth and conductivity control of group Ⅲ nitride semiconductors and their application to short wavelength light emitters[J]. Jpn. J. Appl. Phys., 1997, 36(1):5393-5408.[2] Oishi T, Miura N, Suita M, et al. Highly resistive GaN layers formed by ion implantation of Zn along the c axis[J]. Appl. Phys. Lett., 2003, 94(3):1662-1666.[3] Lin V K X, Alarcon-Llado E, Kim H H, et al. Structural and electrical characterization of AlxGa1-xN/GaN interfaces for UV photodetectors[J]. Electrochem. Solid-State Lett., 2010, 13(9):H301-H304.[4] Huang Z C, Chen J C, Wickenden D. Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors[J]. J. Cryst. Growth, 1997, 170(1):362-366.[5] Yildiz A, Lisesivdin S B, Kasap M, et al. Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted with simple parallel conduction extraction method[J]. Appl. Phys. A, 2010, 98(3):557-563.[6] Pearton S J. Processing of Wide Band Gap Semiconductors[M]. New York: William Andrew Publishing, 2013:300.[7] Heikman S, Keller S, DenBaars S P, et al. Growth of Fe doped semi-insulating GaN by metal organic chemical vapor deposition[J]. Appl. Phys. Lett., 2002, 81(3):439-441.[8] Polyakov A Y, Govorkov A V, Smirnov N B, et al. Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe[J]. Mater. Sci. Semicond. Proc., 2004, 7(1):77-81.[9] Wickenden A E, Koleske D D, Henry R L, et al. The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys[J]. J. Elect. Mater., 2000, 29(1):21-26.[10] Aggarwal R, Agrawal A, Gupta M, et al. Improved linearity performance of AlGaN/GaN MISHFET over conventional HFETs: An optimization study for wireless infrastructure applications[J]. Superlattices and Microstructures, 2011, 50(1):1-13.[11] Hubbard S M, Zhao G, Pavlidis D, et al. High-resistivity GaN buffer templates and their optimization for GaN-based HFETs[J]. J. Cryst. Growth, 2005, 284(3):297-305.[12] Yonenaga I, Ohno Y, Taishi T, et al. Optical properties of fresh dislocations in GaN[J]. J. Cryst. Growth, 2011, 318(1):415-417.[13] Lee S M, Belkhir M A, Zhu X Y, et al. Electronic structures of GaN edge dislocations[J]. Phys. Rev. B, 2000, 61(23):16033-16039.[14] Chen W M, Buyanova I A, Wagner M, et al. Similarity between the 0.88-eV photoluminescence in GaN and the electron-capture emission of the O {P} donor in GaP[J]. Phys. Rev. B, 1998, 58(20):R13351-R13354.[15] Look D C, Molnar R J. Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements[J]. Appl. Phys. Lett., 1997, 70(25):3377-3379.[16] Cheong M G, Kim K S, Oh C S, et al. Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers[J]. Appl. Phys. Lett., 2000, 77(16):2557-2559.[17] Bougrioua Z, Moerman I, Sharma N, et al. Material optimisation for AlGaN/GaN HFET applications[J]. J. Cryst. Growth, 2001, 230(3):573-578.[18] Bougrioua Z, Moerman I, Nistor L, et al. Engineering of an insulating buffer and use of AlN interlayers: Two optimisations for AlGaN-GaN HEMT-like structures[J]. Phys. Status Solidi (a), 2003, 195(1):93-100.[19] Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. J. Appl. Phys., 1997, 82(9):4286-4295.[20] Chierchia R, Bottcher T, Heinke H, et al. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction[J]. J. Appl. Phys., 2003, 93(11):8918-8925.[21] Heinke H, Kirchner V, Einfeldt S, et al. X-ray diffraction analysis of the defect structure in epitaxial GaN[J]. Appl. Phys. Lett., 2000, 77(14):2145-2147.[22] Vickers M E, Kappers M J, Datta R, et al. In-plane imperfections in GaN studied by X-ray diffraction[J]. J. Phys. D, 2005, 38(10A):A99-A104.[23] Mita T, Collazo R, Dalmau R, et al. Growth of highly resistive Ga-polar GaN by LP-MOVPE[J]. Phys. Status Solidi (c), 2007, 4(7):2260-2263.[24] Gay P, Hirsch P B, Kelly A. The estimation of dislocation densities in metals from X-ray data[J]. Acta Metallurgica, 1953, 1(3):315-319.
0
浏览量
179
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构