浏览全部资源
扫码关注微信
新疆师范大学物理与电子工程学院 新疆矿物发光材料及其微结构实验室,新疆 乌鲁木齐,830054
收稿日期:2013-08-06,
修回日期:2013-08-26,
纸质出版日期:2013-12-10
移动端阅览
阿丽屯古丽·麦麦提纳斯尔, 穆亚斯尔·凯合日曼, 艾尔肯·斯地克. Cu掺杂天然方钠石的VUV-Vis发光特性[J]. 发光学报, 2013,34(12): 1596-1602
Alitunguli Maimaitinaisier, Muyasier Kaiheriman, Aierken Sidike. Luminescence Properties of Cu Doped Natural Sodalite Under Ultraviolet-Vis Excitation[J]. Chinese Journal of Luminescence, 2013,34(12): 1596-1602
阿丽屯古丽·麦麦提纳斯尔, 穆亚斯尔·凯合日曼, 艾尔肯·斯地克. Cu掺杂天然方钠石的VUV-Vis发光特性[J]. 发光学报, 2013,34(12): 1596-1602 DOI: 10.3788/fgxb20133412.1596.
Alitunguli Maimaitinaisier, Muyasier Kaiheriman, Aierken Sidike. Luminescence Properties of Cu Doped Natural Sodalite Under Ultraviolet-Vis Excitation[J]. Chinese Journal of Luminescence, 2013,34(12): 1596-1602 DOI: 10.3788/fgxb20133412.1596.
采用高温固相法制备了Cu掺杂天然方钠石光致发光粉末。使用电子探针能谱分析(EDS)和微区分析(EPMA)测出了天然方钠石所含的主要化学成分。用X射线衍射(XRD)研究了Cu掺杂对方钠石结构的影响。室温下测量了真空紫外-紫外-可见光光谱。结果表明,激发光谱中171 nm处的激发带属于基质吸收;202,255,280,290 nm左右的激发带是Cu
+
离子的3d
10
3d
9
4s跃迁引起的。Cu在方钠石晶体中以两种位置存在,分别为Cu
+
离子在Na
+
离子晶格位置上出现的Cu1位置和复合层间的Cu2位置,并形成Cu
+
离子的Cu1和Cu2发光中心。用不同波长光激发Cu1和Cu2发光中心得到的峰值分别位于420 nm和470 nm的蓝色荧光来源于Cu
+
离子内的3d
9
4s3d
10
电子跃迁。对样品的发光机理及浓度猝灭过程进行了探讨和研究。
Cu doped natural sodalite phosphors were synthesized by solid-state reaction method at high-temperature. To examine chemical components of sodalite
we conducted electron probe micro-analysis (EPMA) and energy dispersive spectroscopy (EDS) analiysis using an electron probe scanning electron microscope spectrometer. The structure of Cu doped sodalite samples were characterized with X-ray diffraction (XRD). The VUV-Vis luminescence properties were measured at room temperature. The results show that the excitation band at 171 nm attributed to host absorption and that at 202
255
280
290 nm are due to the 3d
10
3d
9
4s transition of Cu
+
ion. Cu existed in two lattice sites in the sodalite crystal
including Cu1 at the lattice site of Na
+
ions and Cu2 between the composite layers
and formed Cu1 and Cu2 luminescence center of Cu
+
ion
respectively. These emission spectra with the blue-ray peak at 420 nm and 470 nm
which were obtained by exciting the Cu1 and Cu2 luminescence center under different wavelength
and can be attributed to the 3d
9
4s3d
10
electronic transition of Cu
+
ion. The mechanism of luminescence and concentration quenching process were discussed.
Yu L X, Cao L, Zhang D L. Study situation of luminescence performance of natural minerals[J]. Chin. J. World Geology (世界地质), 2000, 19(4):342-345 (in Chinese).[2] Liao S Y, Peng M S, Meng Y F. SodaliteA natural tenebrescence mineral material[J]. Chin. J. Mineral Petrol (矿物岩石), 2005, 25(3):75-78 (in Chinese).[3] Xia W, Lei M K, Luo X X, et al. Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2008, 28(1):41-46 (in Chinese).[4] Lu G M. Study on Synthesis of Sodalite and Its Absorption Properties[D]. Dalian: Dalian University of Technology, 2008 (in Chinese).[5] Duncan R C, Faughnan B W, Phillips W. Inorganic photochromic and cathodochromic recording materials[J]. Opt., 1970, 9(10):2236-2243.[6] Acar A C, Ycel H, Culfaz A. The synthesis and sodium-silver ion exchange of sodalites[J]. Chem. Eng. Commun., 2003, 190(5-8):861-882.[7] Herreros B, Klinowski J. Influence of the source of silicon and aluminum in the hydrothermal synthesis of sodalite[J]. J. Chem. Soc., Faraday Transactions, 1995, 91:1147-1154.[8] Van den Berg A W C, Bromley S T, Jansen J C. Thermodynamic limits on hydrogen in sodalite framework materials: A molecular mechanics investigations[J]. Micropor. Mesopor. Mater., 2005, 78(1):63-71.[9] Sidike A, Sawuti A, Wang X M, et al. Fine structre in photoluminescence spectrum of S center in sodalite[J]. Phys. Chem. Minerals, 2007, 34:477-484.[10] Todd L T, Farrel E F, Linz A. Luminescence of cathodochromic sodalite[J]. IEEE Transaction on Electron Device, 1976, 23(10):1183-1184.[11] Abulai A, Yusufu T, Sidike A, et al. Luminescence properties of thenardite activated with Cu[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2011, 31(5):1197-1199 (in Chinese).[12] Sun L, Wang Y S, Zhao S L, et al. Photostimulated luminescence properties of KCl:Cu+after UV[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2005, 25(10):1733-1735 (in Chinese).[13] Ni H Y, Liang H B, Liu C M, et al. Luminescence of Ce3+ ion activated sodium gadolinium pyrosilicates phosphor under vacuum ultraviolet-vis excitation[J]. J. Chin. Rare Earth Soc.(中国稀土学报), 2013, 31(1):38-43 (in Chinese).[14] Peng X P, Lan W, Tan Y S, et al. Photoluminescent properties of Cu+ doped ZnO thin films[J]. Acta Phys. Sinica (物理学报), 2004, 53(8):2705-2709 (in Chinese).[15] Dhoble S J, Gedam S C, Nagpure I M, et al. Luminescence of Cu+ in halosulphate phosphor[J]. J. Mater. Sci., 2008, 43:3189-3196.[16] Bosi L, Gallo D, Zelada M. On the decay of KCl:Cu+ fluorescence[J]. IL Nuovo Cimento, 1996, 18(5):605-611.[17] Kurobori T, Taniguchi S, Takeuchi N. Lifetime of the aggregate centres in NaCl:Cu+ single crystals[J]. J. Mater. Sci. Lett., 1992, 11(16):1140-1142.
0
浏览量
324
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构