浏览全部资源
扫码关注微信
1. 大连理工大学 化工学部精细化工重点实验室,辽宁 大连,116024
2. 大连路明发光科技股份有限公司,辽宁 大连,116025
收稿日期:2013-08-19,
修回日期:2013-09-06,
纸质出版日期:2013-12-10
移动端阅览
于晶杰, 肖志国, 宁桂玲. Ba<sub>10</sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>∶Eu<sup>2+</sup>荧光体的光谱特性[J]. 发光学报, 2013,34(12): 1561-1566
YU Jing-jie, XIAO Zhi-guo, NING Gui-ling. Spectra Properties of Ba<sub>10</sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>:Eu<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(12): 1561-1566
于晶杰, 肖志国, 宁桂玲. Ba<sub>10</sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>∶Eu<sup>2+</sup>荧光体的光谱特性[J]. 发光学报, 2013,34(12): 1561-1566 DOI: 10.3788/fgxb20133412.1561.
YU Jing-jie, XIAO Zhi-guo, NING Gui-ling. Spectra Properties of Ba<sub>10</sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>:Eu<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(12): 1561-1566 DOI: 10.3788/fgxb20133412.1561.
采用高温固相法合成了荧光体Ba
10
(PO
4
)
4
(SiO
4
)
2
:Ce
3+
和Ba
10
(PO
4
)
4
(SiO
4
)
2
:Eu
2+
,研究了两种荧光体的光谱特性。结果表明,两者都呈现较强的宽带激发特征。根据同种基质中Eu
2+
和Ce
3+
两种离子光谱特征的相关性,通过测得的Ba
10
(PO
4
)
2
(SiO
4
)
2
基质中Ce
3+
的光谱数据估算了Ba
10
(PO
4
)
2
(SiO
4
)
2
:Eu
2+
中Eu
2+
的斯托克斯位移(
S
)和激发能量,估算结果与Ba
10
(PO
4
)
2
(SiO
4
)
2
:Eu
2+
样品的光谱分析结果十分吻合。Ba
10
(PO
4
)
2
(SiO
4
)
2
:Eu
2+
可以同时被紫光和蓝光激发,发出偏白的绿光,可用作白光LED的荧光粉。
The phosphors composed of Eu or Ce ions doped in Ba
10
(PO
4
)
4
(SiO
4
)
2
matrix were prepared by solid state reaction. The PL spectra properties of Ba
10
(PO
4
)
4
(SiO
4
)
2
:Eu
2+
and Ba
10
(PO
4
)
2
(SiO
4
)
2
:Ce
3+
were investigated. Strong broad excitation band was observed in both samples. The Eu
2+
of Stokes shift (
S
) and excitation energy of Ba
10
(PO
4
)
4
(SiO
4
)
2
:Eu
2+
were calculated by the PL spectra of Ba
10
(PO
4
)
2
(SiO
4
)
2
:Ce
3+
. The estimated excitation energy and the experiment result are closely coincided. Ba
10
(PO
4
)
4
(SiO
4
)
2
:Eu
2+
can be excited by UV-LED or blue LED
and emits absinthe-green light.
Butler H K. Fuorescent Lamp Phosphors [M]. University Park Pennstate, PA: University Press, 1986:98-99.[2] Smets B M J. Phosphors based on rare-earths, a new era in fluorescent lighting[J]. Mater. Chem. Phys., 1987, 16(3-4):283-299.[3] Von Schwarz H. Strontiumapatite des typs Sr10(PO4)4(XⅣO4)2 (XⅣ=Si, Ge)[J]. Z. Anorg. Allg. Chem., 1968, 357(1):43-53.[4] Blasse G, Bril A. Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate[J]. Phys. Lett. A, 1969, 28(8):572-573.[5] Jagannathant R, Kutty T R N. Anomalous fluoresence features of Eu2+ in apatite-pyromorphite type matrices[J]. J. Lumin., 1997, 71(2):115-121.[6] Yu J J, Gong W T, Xiao Z G, et al. Spectral structure of barium-phosphate-silicate phosphor Ba10(PO4)4(SiO4)2:EuM+[J]. J. Lumin., 2012, 132(11):2957-2960.[7] Shi C S, Ye Z R. The luminescence of Eu2+ ion in solids[J]. Chin. J. Lumin.(发光学报), 1982, 3(1):1-10 (in Chinese).[8] Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12Ce3+[J]. Appl. Phys. Lett., 1967, 11(1):53-57.[9] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. Ⅲ. Oxides containing ionic complexes[J]. Phys.Rev. B, 2001, 64(12):125117-1-12.[10] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. Ⅰ. Fluoride compounds[J]. Phys. Rev. B, 2000, 62(23):15640-1-10.[11] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. Ⅱ. Chloride, bromide, and iodide compounds[J]. Phys. Rev. B, 2000, 62(23):15650-1-10.[12] Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. Ⅳ. Aluminates and "simple" oxides[J]. J. Lumin., 2002, 99(3):283-299.[13] Dorenbos P. Energy of the Eu2+ 5d state relative to the conduction band in compounds[J]. J. Lumin., 2008, 128:578-582 (in Chinese).[14] Dorenbos P. Locating lanthanide impurity levels in the forbidden band of host crystals[J]. J. Lumin., 2004, 108(1-4):301-305.[15] Dorenbos P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds[J]. J. Phys: Condensed Matter, 2003, 15(17):2645-2665.[16] Dorenbos P, Pierron L, Dinca L, et al. 4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4[J]. J. Phys.:Condensed Matter, 2003, 15(3):511-520.[17] Dorenbos P. Relation between Eu2+ and Ce3+ f-d-transition energies in inorganic compounds[J]. J.Phys.: Condensed Matter, 2003, 15(27):4797-4807.[18] Kottaisamy M, Jagannathan R, Jeyagopal P, et al. Eu2+ luminescence in M5(PO4)3X apatites where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH-[J]. J. Phys. D: Appl. Phys., 1994, 27:2210-2215.[19] Suarsanan K, Young R A. Significant precision in crystal structural details: Holly springs hydroxyapatite[J]. Acta Crytallogr. B, 1969, 25(8):1534-1543.[20] Piriou B, Fahmi D, Dexpert-Ghys J, et al. Unusual fluorescent properties of Eu3+ in oxyapatites[J]. J. Lumin., 1987, 39(2):97-103.
0
浏览量
113
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构