浏览全部资源
扫码关注微信
北京交通大学光电子技术研究所 教育部发光与光学信息重点实验室 北京,100044
收稿日期:2013-07-31,
修回日期:2013-09-27,
纸质出版日期:2013-12-10
移动端阅览
张玉巾, 彭洪尚, 黄世华, 由芳田. 掺杂香豆素6的杂化纳米颗粒的制备及荧光性能研究[J]. 发光学报, 2013,34(12): 1555-1560
ZHANG Yu-jin, PENG Hong-shang, HUANG Shi-hua, YOU Fang-tian. Preparation and Analysis of Fluorescent Properties of Coumarin 6-doped Polymer/Alkoxysilane Hybrid Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(12): 1555-1560
张玉巾, 彭洪尚, 黄世华, 由芳田. 掺杂香豆素6的杂化纳米颗粒的制备及荧光性能研究[J]. 发光学报, 2013,34(12): 1555-1560 DOI: 10.3788/fgxb20133412.1555.
ZHANG Yu-jin, PENG Hong-shang, HUANG Shi-hua, YOU Fang-tian. Preparation and Analysis of Fluorescent Properties of Coumarin 6-doped Polymer/Alkoxysilane Hybrid Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(12): 1555-1560 DOI: 10.3788/fgxb20133412.1555.
采用一种再沉淀-封装法制备了掺杂香豆素6(C6)的杂化荧光纳米颗粒,并通过SEM和DLS对其进行了形貌和粒径大小表征。在450 nm光激发下,制备的C6掺杂纳米颗粒表现出绿色荧光。通过比较光致发光光谱随掺杂浓度的变化,得出C6掺杂纳米颗粒的浓度猝灭是因为分子间能量转移而非C6分子聚集所致。另外,由于所选聚合物基质材料PS和PMMA分子结构的区别,导致PS-基质和PMMA-基质的纳米颗粒的光谱形状不同。C 6分子在PS-基质的纳米颗粒中处于两种不同的微环境,所以发射峰较宽;PMMA是线性分子,PMMA-基质的纳米颗粒中只存在一种局域环境,所以发射峰较窄。高的掺杂浓度会超过纳米颗粒对C6分子的负载能力,从而导致C6分子在水溶液中聚集。
Coumarin 6 (C6) doped fluorescent hybrid nanoparticles (NPs) were prepared by a reprecipitation-encapsulation method. The as-prepared NPs were characterized by SEM and DLS. The C6-doped NPs gave strong green fluorescence under the excitation of 450 nm. The concentration-dependent fluorescence of C6-doped NPs was then studied. The results indicated that the fluorescence of C6 was quenched by intermolecular energy transfer rather than by aggregation. In addition
the difference in spectral shape of PS-based and PMMA-based NPs was interpreted from the view of polymer structure. The broad emission band in PS-based NPs was attributed to two different microenvironments surrounding C6
while the narrower emission band in PMMA-based NPs to one local environment. Finally
the loading capacity of the hybrid NPs for C6 is studied
and higher doping concentration will result in aggregates in water.
Bruchez M J, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385):2013-2016.[2] Liu Y, Cui T H. Organic optoelectronics: Materials, devices and application [J]. Opt. Precision Eng.[HTK](光学 精密工程), 2005, 13(5):525-534 (in English).[3] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat. Biotechnol., 2002, 21:47-51.[4] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nat. Mater., 2005, 4:435-446.[5] Du W S, Gao C, Qiu S J. Synthesis and optical spectral properties of polyfluorene derivative with broad emission [J]. Chin. J. Liq. Cryst. Disp.[HTK](液晶与显示), 2011, 26(1):1-4 (in Chinese).[6] Wu C F, Zheng Y L, Szymanski C. Energy transfer in a nanoscale multichromophoric system: Fluorescent dye-doped conjugated polymer nanoparticles [J]. J. Phys. Chem., 2008, 112(6):1772-1781.[7] Diez I, Ras R H A. Few-atom silver clusters as fluorescent reporters [J]. Adv. Fluoresc. Rep. Chem.Bio. Ⅱ, Springer Series on Fluorescence, 2010, 9:307-332.[8] Sun Z P, Wang Y L, Wei Y T, et al. Ag cluster-aptamer hybrid: Specifically marking the nucleus of live cells [J]. Chem. Commun., 2011, 47:11960-11962.[9] Wang L, Wang K, Santra S, et al. Watching silica nanoparticles glow in the biological world [J]. Anal. Chem., 2006, 78(3):646-654.[10] Tapec R, Zhao X J, Tan W H. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors [J]. J. Nanosci. Nanotechnol., 2002, 2(3-4):405-409.[11] [JP4]McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors [J]. Chem. Rev., 2000, 100(7):2537-2574.[JP][12] Fan C H, Wang S, Hong J W, et al. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles [J]. PNAS, 2003, 100(11):6297-6301.[13] Pei Q B, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene [J]. J. Am. Chem. Soc., 1996, 118(31):7416-7417.[14] Chen L H, McBranch D W, Wang H L. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J]. PNAS, 1999, 96(22):12287-12292.[15] Heeger P S, Heeger A J. Making sense of polymer-based biosensors [J]. PNAS, 1999, 96(22):12219-12221. [16] Liu H Y, Zhang X, Wu X M, et al. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (Ⅱ) sensing [J]. Chem. Commun., 2011, 47:4237-4239.[17] Guo W W, Yuan J P, Dong Q Z, et al. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification [J]. J. Am. Chem. Soc., 2010, 132(3):932-934.[18] Yeh H C, Sharma J, Han J J, et al. A DNA-silver nanocluster probe that fluoresces upon hybridization [J]. Nano. Lett., 2010, 10(8):3106-3110.[19] Zhao X J, Bagwe R P, Tan W H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion [J]. Adv. Mater., 2004, 16(2):173-176.[20] Peng H S, Stolwijk J A, Sun L N, et al. A nanogel for ratiometric fluorescent sensing of intracellular pH values [J]. Angew. Chem., 2010, 122(25):4342-4345.[21] Muller M, Zented R, Maka T, et al. Dye-containing polymer beads as photonic crystals [J]. Chem. Mater., 2000, 12(8):2508-2512. [22] Wang X H, Peng H S, Chang Z, et al. Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen [J]. Microchim. Acta, 2012, 178(1-2):147-152.[23] Wang X H, Peng H S, Ding H, et al. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing [J]. J. Mater. Chem., 2012, 22:16066-16071. [24] Abdel-Mottaleb M S A, Antonious M S, Abo Ali M M, et al. Photophysics and dynamics of coumarin laser dyes and their analytical implications [J]. Proc. Indian Acad. Sci.(Chem. Sci.), 1992, 104(2):185-196.[25] Wagner B D. The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems [J]. Molecules, 2009, 14(1):210-237. [26] Haidekker M A, Brady T P, Lichlyter D, et al. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes [J]. Bioorg. Chem., 2005, 33(6):415-425. [27] Bera R N, Sakakibara Y, Abe S, et al. Time-resolved photoluminescence study on concentration quenching of a red emitting tetraphenylchlorin dye for organic electroluminescent devices [J]. Synth. Met., 2005, 150(1):9-13.[28] Dutta A K, Kamada K, Ohta K. Spectroscopic studies of nile red in organic solvents and polymers [J]. J. Photochem. Photobiol. A, 1996, 93(1):57-64.[29] Movchan T G, Khamova T V, Shilova O A, et al. Influence of the composition and structure of epoxy siloxane matrix on the spectral behavior of the nile red dye:Ⅱ. Sol-gel system based on tetraethoxysilane and glycidoxypropyltrimethoxysilane [J]. Glass Phys. Chem., 2009, 35(2):170-175.[30] Fery-Forgues S, El-Ayoubi R, Lamre J F. Fluorescent microcrystals obtained from coumarin6 using the reprecipitat ion method [J]. J. Fluoresc., 2008, 18(3-4):619-624.
0
浏览量
154
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构