浏览全部资源
扫码关注微信
1. 华南师范大学 广东省微纳光子功能材料与器件重点实验室,广东 广州,510006
2. Universit&eacute re
3. du Littoral C&ocirc
4. te d'Opale, Dunkerque,France
5. Laboratoire de Physicochimie de l'Atmosph&egrave
收稿日期:2013-05-30,
修回日期:2013-08-29,
纸质出版日期:2013-11-10
移动端阅览
罗舒文, 陈长水, CHEN Wei-dong. 基于拉曼光谱和多元统计分析技术的结肠癌早期诊断[J]. 发光学报, 2013,34(11): 1544-1549
LUO Shu-wen, CHEN Chang-shui, CHEN Wei-dong. Early Diagnosis of Colon Cancer Using Raman Spectroscopy and Multivariate Statistical Analysis Techniques[J]. Chinese Journal of Luminescence, 2013,34(11): 1544-1549
罗舒文, 陈长水, CHEN Wei-dong. 基于拉曼光谱和多元统计分析技术的结肠癌早期诊断[J]. 发光学报, 2013,34(11): 1544-1549 DOI: 10.3788/fgxb20133411.1544.
LUO Shu-wen, CHEN Chang-shui, CHEN Wei-dong. Early Diagnosis of Colon Cancer Using Raman Spectroscopy and Multivariate Statistical Analysis Techniques[J]. Chinese Journal of Luminescence, 2013,34(11): 1544-1549 DOI: 10.3788/fgxb20133411.1544.
为了寻找结肠癌的病理发展规律在拉曼光谱属性上的体现
采用共聚焦显微拉曼光谱仪对60例离体的正常结肠组织、腺瘤性息肉和腺癌组织的近红外拉曼光谱进行对比检测
初步探讨了三类组织的拉曼光谱特征及其改变的规律。结果表明:三类组织拉曼光谱的差异明显存在于830
855
1 032
1 210
1 323
1 335
1 445
1 450
1 655 cm
-1
处
腺瘤性息肉的光谱大体位于正常组织与腺癌组织之间。以组织病理诊断为金标准
主成分分析结合线性判别分析技术建立的诊断算法区分3类组织的灵敏度分别为96.9%、85.7%和97.3%
特异性分别为82.8%、90%和92.3%。因此
拉曼光谱有潜力在分子水平上区分正常结肠组织、腺瘤性息肉和腺癌组织
有望成为结肠癌早期诊断的一种有效方法。
By using confocal Raman microspectrometer
near-infrared (NIR) Raman spectra from 60 cases of
ex vivo
normal
adenomatous polyp and adenocarcinoma colon tissues were obtained. To find the embodiment of the regularity of pathological development of colon cancer on Raman spectral characteristic
we analyzed and compared the Raman spectral properties of the three tissue types
and researched the regularity of spectra-related changes. The results show that significant differences in Raman spectra were observed among the three tissue types at around 830
855
1 032
1 210
1 323
1 335
1 445
1 450 and 1 655 cm
-1
. Overall
the spectra of adenomatous polyp was in the middle of the spectra of normal and adenocarcinoma colon tissues
which might illustrate that adenomatous polyp was in the transitional state. Principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to develop diagnostic algorithms for classifying the Raman spectra of different types of colon tissues. Based on the gold standards of histopathologic diagnosis
sensitivities of 96.9%
85.7% and 97.3%
and specificities of 82.8%
90%
and 92.3%
respectively were achieved by using PCA-LDA algorithms to discriminate the normal
adenomatous polyp and adenocarcinoma colon tissues. Therefore
near-infrared Raman spectroscopy can not only be utilized to differentiate colon cancer tissues from normal tissues
but also be used for discriminating colon premalignant lesions in molecular level. It is a potential effective method for early diagnosis of colon cancer.
Jemal A, Bray F, Center M M, et al. Global cancer statistics [J]. CA Cancer J. Clin., 2011, 61(2):69-90.[2] American Cancer Society. Colorectal Cancer Facts & Figures 2008~2010 [R]. Atlanta: American Cancer Society, 2008:1-32.[3] Lopes P C, Moreira J A, Almeida A, et al. Discriminating adenocarcinoma from normal colonic mucosa through deconvolution of Raman spectra [J]. J. Biomed. Opt., 2011, 16(12):127001-1-13.[4] Beljebbar A, Bouche O, Diebold M D, et al. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues [J]. Crit. Rev. Oncol. Hematol., 2009, 72(3):255-264.[5] Teh S K, Zheng W, Ho K Y, et al. Near-infrared Raman spectroscopy for optical diagnosis in the stomach: Identification of Helicobacter-pylori infection and intestinal metaplasia [J]. Int. J. Cancer, 2010, 126(8):1920-1927.[6] Teh S K, Zheng W, Ho K Y, et al. Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach [J]. Br. J. Surg., 2010, 97(4):550-557.[7] Molckovsky A, Song L M, Shim M G, et al. Diagnostic potential of near-infrared Raman spectroscopy in the colon:Diffe-rentiating adenomatous from hyperplastic polyps [J]. Gastrointest. Endosc., 2003, 57(3):396-402.[8] Huang Z, Zheng W, Widjaja E, et al. Classification of colonic tissues using Raman spectroscopy and multivariate techniques [J]. Biomed. Vib. Spectrosc. Ⅲ, 2006, 6093:60930Q-1-4.[9] Widjaja E, Zheng W, Huang Z. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines [J]. Int. J. Oncol., 2008, 32(3):653-662.[10] Chowdary M V, Kumar K K, Thakur K, et al. Discrimination of normal and malignant mucosal tissues of the colon by Raman spectroscopy [J]. Photomed. Laser Surg., 2007, 25(4):269-274.[11] Zhang Z M, Chen S, Liang Y Z, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 41(6):659-669.[12] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares [J]. Analyst., 2010, 135(5):1138-1146.[13] Krafft C, Steiner G, Beleites C, et al. Disease recognition by infrared and Raman spectroscopy [J]. J. Biophoton., 2009, 2(1-2):13-28.[14] Sattlecker M, Stone N, Smith J, et al. Assessment of robustness and transferability of classification models built for cancer diagnostics using Raman spectroscopy [J]. J. Raman Spectrosc., 2011, 42(5):897-903.[15] Bergholt M S, Zheng W, Lin K, et al. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection [J]. J. Biomed. Opt., 2011, 16(3):037003-1-11.[16] Bender R, Lange S. Adjusting for multiple testing-when and how? [J]. J. Clin. Epidemiol., 2001, 54(4):343-349.[17] Bergholt M S, Zheng W, Lin K, et al. Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach [J]. Analyst., 2010, 135(12):3162-3168.[18] Kast R E, Serhatkulu G K, Cao A, et al. Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model [J]. Biopolymers, 2008, 89(3):235-241.[19] Yan X L, Dong R X, Zhang L, et al. Raman spectra of single cell from gastrointestinal cancer patients [J]. World J. Gastroenterol., 2005, 11(21):3290-3292.[20] Hughes J H, Leigh C J, Raab S S, et al. Cytologic criteria for the brush diagnosis of gastric adenocarcinoma [J]. Cancer, 1998, 84(5):289-294.
0
浏览量
72
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构