ZHU Jun, LI Zhi-quan. Characteristics of Transmission and Attenuation of Surface Plasmon Polaritons in Otto Structure Loaded MIM Wave Guide[J]. Chinese Journal of Luminescence, 2013,34(11): 1533-1537
ZHU Jun, LI Zhi-quan. Characteristics of Transmission and Attenuation of Surface Plasmon Polaritons in Otto Structure Loaded MIM Wave Guide[J]. Chinese Journal of Luminescence, 2013,34(11): 1533-1537 DOI: 10.3788/fgxb20133411.1533.
The MIM waveguide loaded Ottos structure was designed to research the characteristics of transmission and attenuation of surface plasmon polaritons (SPPs)
and the sphere EM field of the solution was used to achieve eigenvalue of solution in the entire media area. The structure with 750 nm and 1 500 nm media were simulated. The results show that TM
0
propagation constants reaches 1.541 in the 750 nm improved structure. With the reduction of the SiO
2
dielectric thickness
the reflection coefficient increases
and the resonator direction with different metal dielectric constant have the same trend. With the reduction of the cavity thickness
the reflection phase and the stored energy also reduce.
关键词
Keywords
references
Ritchie R H. Plasma losses by fast electrons in thin films [J]. Phys. Rev., 1957, 106(5):874-881.[2] Wang Y L, Shi Y S, Hou B H, et al. THz and infrared absorption spectra of Zn3BPO7 crystal [J]. J. Synth. Cryst. 2010, 39(4):838-841.[3] Walters R J, Van Loon R V A, Brunets I, et al. A silicon-based electrical source of surface plasmon polaritons [J]. Nat. Mater., 20010, 9(1):21-25.[4] Gao G Y. The study of coherence of surface plasmon polaritons [D]. Tianjin: Nankai University, 2010.[5] Ge Y J, Zhang G Q, Chen Q. Plasma Science Technology and Its Application in Industry [M]. Beijing: China Light Industry Press, 2007.[6] Wood J J, Tomlinson L A, Hess O, et al. Spoof plasmon polaritons in slanted geometries [J]. Phys. Rev. B, 2012, 85(7):075441-1-7.[7] Cuche A, Mahboub O, Devaux E, et al. Plasmonic coherent drive of an optical trap [J]. Phys. Rev. Lett., 2012, 108(2):026801-1-4.[8] Zeng X D, Xu J P, Yang Y P. Spontaneous emission interference enhancement with a -negative metamaterial slab [J]. Phys. Rev. A, 2011, 84(3):033834-1-5.[9] Huang D X, Liu X F. Semiconductor Laser and Applications [M]. Beijing: National Defence Undustry Press, 1999.[10] Stockman M I. The spaser nanoscale quantum generator and ultrafast amplifier [J]. J. Opt., 2010, 12(2):024004-1-13.[11] Stockman M I. Spaser action, loss compensation, and stability in plasmonic systems with gain [J]. Phys. Rev. Lett., 2011, 106(15):156802-1-4.[12] Li N, Ni X C, Wang B. Research progress of surface plasmon polaritons [J]. J. Tianjin Univ. Technol. Edu. (天津职业技术师范学院学报), 2010, 20(4):18-23 (in Chinese).[14] Shepherd H J, Bonnet S, Guionneau P, et al. Pressure-induced two-step spin transition with structural symmetry breaking: X-ray diffraction, magnetic, and Raman studies [J]. Phys. Rev. B, 2011, 84(14):144107-1-5.[16] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser [J]. Nature, 2009, 460:1110-1112.[17] Stockman M I, Brongersma L, Shalaev V M. The case for plasmonics [J]. Science, 2010, 1126:440-441.[18] Wiersma D S, Noginov M A. Nano and random lasers [J]. J. Opt., 2010, 12(2):020201-1-3.[19] Fang Z Y, Peng Q, Song W T, et al. Focusing in symmetry broken nanocorrals [J]. Nano Lett., 2011, 11(2):893-897.[20] Fedotov V A, Papasimakis N, Plum E, et al. Spectral collapse in ensembles of metamolecules [J]. Phys. Rev. Lett., 2010, 104(22):223901-1-3.