浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
3. 西安工业大学,陕西 西安,710032
收稿日期:2013-04-27,
修回日期:2013-05-23,
纸质出版日期:2013-11-10
移动端阅览
张祥伟, 宁永强, 秦莉, 刘云, 王立军. 氧化光栅型垂直腔面发射激光器的研究[J]. 发光学报, 2013,34(11): 1517-1520
ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Study of Oxide-grating Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2013,34(11): 1517-1520
张祥伟, 宁永强, 秦莉, 刘云, 王立军. 氧化光栅型垂直腔面发射激光器的研究[J]. 发光学报, 2013,34(11): 1517-1520 DOI: 10.3788/fgxb20133411.1517.
ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Study of Oxide-grating Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2013,34(11): 1517-1520 DOI: 10.3788/fgxb20133411.1517.
通过分析矩形出光孔径和亚波长金属光栅结构
发现大孔径高功率垂直腔面发射激光器(VCSEL)的偏振控制的难点在于横模非常复杂。因此提出一种新型的氧化光栅型VCSEL结构
不仅能够很好地在有源区内引入各项异性的增益结构
并且最大的优势还在于能够完美地控制大孔径VCSEL的横模。通过有限元软件对器件有源区的电流分布进行了模拟
发现当光栅脊的宽度为1.8 m时
载流子在光栅两端聚集的现象基本上可以消除
而且其电流密度分布差可以达到很高。
The difficulty of controlling the polarization of lager aperture VCSEL is the complicated transverse modes after analysing the structures of rectangle aperture VCSEL and sub-wavelength metal-grating VCSEL. So we put forward a new type of structure-oxidation type grating VCSEL structure. This structure can not only introduce anisotropy gain into active region but its biggest advantage is able to perfect control of large aperture VCSEL transverse mode. The sturcture was simulited by finite element software
and it is found that the structure achieve two goals when the grating ridge is 1.8 m.
Wiedenmann D, King R, Jung C, et al. Design and analysis of single-mode oxidized VCSEL's for high-speed optical interconnects [J]. IEEE J. Sel. Top. Quant., 1991, 5(3):503-511.[2] Geels R S, Corzine S W, Coldren L A. InGaAs vertical cavity surface emitting lasers [J]. IEEE J. Quant. Elect., 1991, 27(6):1359-1367.[3] Mederer F, Jager R, Schnitzer P, et al. Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL [J]. IEEE Photon. Technol. Lett., 2000, 12(2):199-201.[4] Margalit N M, Zhang S Z, Bowers J E. Vertical cavity lasers for telecom applications [J]. IEEE Commun. Mag., 1997, 35(5):164-170.[5] Giboney K S, Aronson L B, Lemoff B E. The ideal light source for data nets [J]. IEEE Spectrum, 1998, 35(2):43-53.[6] Chellappan K V, Erden E, Urey H. Laser-based displays: A review [J]. Appl. Opt., 2010, 49(25):F79-F98.[7] Ostermann J M, Debernardi P, Jalics C, et al. Surface gratings for polarization control of single- and multi-mode oxide-confined vertical-cavity surface-emitting lasers [J]. Opt. Commun., 2005, 246(4):511-519.[8] Grabherr M, King R, Jager R, et al. Improved output performance of high-power VCSELs [J]. IEEE J. Sel. Top. Quant, 2001, 7(2):210-216.[9] Jager R, Miller M, Thalmaier C, et al. Bottom-emitting VCSEL's for high-CW optical output power [J]. IEEE Photon. Technol. Lett., 1998, 10(8):1061-1063.[10] Ning Y Q, Qin L, Sun Y F, et al. High power VCSEL device with periodic gain active region [J]. SPIE, 2007, 6782:67820O-1-8.[11] Wang Z F, Ning Y Q, Zhang Y, et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array [J]. Opt. Exp., 2010, 18(23):23900-23905.[12] Wilkinson C I, Woodhead J, Frost J E F, et al. Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal [J]. IEEE Photon. Technol. Lett., 1999, 11(2):155-157.[13] Di Sopra F M, Brunner M, Hovel R. Polarization control in strained T-bar VCSELs [J]. IEEE Photon. Technol. Lett., 2002, 14(8):1034-1036.[14] Nishiyama N, Mizutani A, Hatori N, et al. Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate [J]. IEEE J. Sel. Top. Quant., 1999, 5(3):530-536.[15] Wang W, Ning Y Q, Tian Z H, et al. Coherent polarization stabilization in large-aperture rectangular post bottom-emitting vertical-cavity surface-emitting lasers [J]. Opt. Commun., 2011, 284(5):1335-1338.[16] Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays [J]. Opt. Precision Eng. (光学 精密工程), 2012, 20(1):17-23 (in Chinese).[17] Zhang X, Ning Y Q, Zeng Y G, et al. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array [J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(9):2014-2022 (in Chinese).
0
浏览量
60
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构