浏览全部资源
扫码关注微信
西北工业大学应用物理系 陕西省光信息技术重点实验室,陕西 西安,710072
收稿日期:2013-06-07,
修回日期:2013-07-10,
纸质出版日期:2013-11-10
移动端阅览
屈俊荣, 郑建邦, 吴广荣, 曹崇德. 退火温度对聚对苯乙炔MOPPV-ZnSe量子点复合材料太阳电池性能影响[J]. 发光学报, 2013,34(11): 1511-1516
QU Jun-rong, ZHENG Jian-bang, WU Guang-rong, CAO Chong-de. Effect of Annealing Treatment on MOPPV-ZnSe Quantum Dots Composite Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(11): 1511-1516
屈俊荣, 郑建邦, 吴广荣, 曹崇德. 退火温度对聚对苯乙炔MOPPV-ZnSe量子点复合材料太阳电池性能影响[J]. 发光学报, 2013,34(11): 1511-1516 DOI: 10.3788/fgxb20133411.1511.
QU Jun-rong, ZHENG Jian-bang, WU Guang-rong, CAO Chong-de. Effect of Annealing Treatment on MOPPV-ZnSe Quantum Dots Composite Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(11): 1511-1516 DOI: 10.3788/fgxb20133411.1511.
利用原位缩合法制备了聚(2-甲氧基-5辛氧基)对苯乙炔(MOPPV)-ZnSe量子点复合材料
通过对复合材料的X射线衍射、透射电子显微镜、扫描电子显微镜、紫外可见吸收光谱等研究
发现聚合物MOPPV与ZnSe量子点以包覆形式有效地复合在一起
复合材料中ZnSe量子点结晶性良好
尺寸约为4 nm;且两者之间发生光诱导电荷转移
复合材料随着退火温度的升高
其吸收光谱范围发生红移。通过对MOPPV-ZnSe复合材料光电性能的研究发现
复合材料光电性能随着退火温度的升高逐渐表现出明显的二极管特性
转换效率出现先增大后减小的趋势
且在160℃时转换效率达到最大为0.3726%。
According to high photoelectric conversion performance of quantum dot composite material
we use in situ condensation method to prepare polymer/poly(2-methoxyl-5-octyloxy)-1
4-phenylenevinylene (MOPPV)-ZnSe quantum dot composites. X-ray diffraction
transmission electron microscope
UV-Vis absorption spectroscopy were employed to study their characteristics. The results indicate that MOPPV and ZnSe quantum dots forming a coating or mosaic structure which can be effectively combined
and ZnSe quantum dots keep good crystallinity
each with an average size of 4 nm in the composite
producing the light induced charge transfer phenomenon. The absorption spectra of the composite have a few red-shift with the increasing of the annealing temperature. The study of composite photoelectric performance indicates that it gradually shows obvious characteristic of diode
the power conversion efficiency reaches the maximum of 0.3726% at the temperature of 160℃.
Declerck P, Houbertz R, Jakopic G. High refractive index inorganic-organic hybrid materials for photonic applications [J]. Mater. Res. Soc. Symp. Proc., 2008, 1007(S01-02):15-21.[2] Ren J, Zheng J B, Zhao J L. Optimized design of active layers in organic donor-acceptor solar cells [J]. Acta Phys. Sinica (物理学报), 2007, 56(5):2868-2871 (in Chinese).[3] Jiang B Y, Zheng J B, Wang C F, et al. Optimization of quantum dot solar cells based on structures of GaAs/InAs-GaAs/ZnSe [J]. Acta Phys. Sinica (物理学报), 2012, 61(13):138801-1-5 (in Chinese).[4] Peng Y C, Fu G S. Approach to quantum dot solar cells [J]. Chin. J. Mater. Res.(材料研究学报), 2009, 23(5):449-456 (in Chinese).[5] Zhao Y, Xiong S Z, Zhang X D. Next generation solar cell [J]. Acta Phys. Sinica (物理学报), 2010, 39(5):314-323 (in Chinese).[6] Wang F, Cheng Z M, Liu G B. The first principles of the electronic structures of sphalerite ZnSe [J]. Sci. Tech. Rev.,2010, 28(24):53-57.[7] Nikesh V V, Mahamuni S. Highly photoluminescent ZnSe/ZnS quantum dots [J]. Semicond. Sci. Technol., 2001, 16(8):687-690.[8] Xiong S, Huang S H, Tang A W. Investigation on electroluminescence of MEH-PPV/ZnSe nanocomposite device [J]. Spectrosc. Spect. Anal.(光谱与光谱分析), 2008, 28(2):249-252 (in Chinese).[9] Wu C S, Chen Y. Copolyfluorenes containing bipolar groups, synthesis and application to enhance electroluminescence of MEH-PPV [J]. Macromolecules, 2009, 42(11):3729-3737.[10] Kim Y K, Lee K Y. Size dependence of electroluminescence of nanoparticle dispersed MEH-PPV films [J]. Synth. Met., 2000, 111(2):207-211.[11] Kang P, Liu R B, Wang S, et al. Advance in quantum dot solar cells [J]. Chin. J. Power Source (电源技术), 2011, 135(8):1019-1024 (in Chinese).[12] Qu J R, Zheng J B, Wang C F, et al. The investigation on characterist -ics of solar cells made of MOPPV/ZnSe quantum dots composite system [J]. Acta Phys. Sinica (物理学报), 2013, 62(7):078802-1-5 (in Chinese).[13] Feng W, Gao Z K. Simulation of physical properties of organic photovoltaic cell [J]. Acta Phys. Sinica (物理学报), 2008, 57(4):2567-2573 (in Chinese).[14] Yu H Z, Wen Y X. Influence of the thickness and cathode material on the performance of the polymer solar cells [J]. Acta Phys. Sinica (物理学报), 2011, 60(3):038401-1-5 (in Chinese).[15] Huang H Z. Nanamaterial Analysis [M]. Beijing: Chemical Industry Press, 2003, 243.[16] Liu R X, Zhang L N, Li X Y, et al. Towards spectroscopic reference material of semiconductor quantum dots and the size characterization using HRTEM [J]. Scientia Sinica (中国科学), 2011, 41(9):1023-1028 (in English).[17] Zhang Y P, Zhang J J, Li W J, et al. Influence of annealing treatment on P3HT:PCBM active layer [J]. J. Sol. Energy, 2011, 32(2):220-225.[18] Hao H Y, Yao X, Wan X, et al. Optical absorption properties of ZnSe/SiO2 nanocomposites [J]. J. Xi'an Jiao Tong Univ.(西安交通大学学报), 2005, 39(12):1391-1396 (in Chinese).[19] Jiang B Y. Simulation and experiment of physical properties based on ZnSe quantum dot solar cells . Xi'an: Northwestern Polytechnical University, 2012 (in Chinese).[20] Ray B, Nair P R, Alam M A. Annealing dependent performance of organic bulk-heterojunction solar cells: A theoretical perspective [J]. Sol. Energ. Mat. Sol. Cells, 2011, 95(32):3287-3294.[21] Du H L, Deng Z B, Zhang G L. Improved performance of polymer solar cells by microwave annealing [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):51-54 (in Chinese).[22] Zhao J H, Jiang J W, Wei N, et al. Thermal conductivity dependence on chain length in amorphous polymers [J]. J. Appl. Phys., 2013, 113(18):184304-1-5.
0
浏览量
74
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构