浏览全部资源
扫码关注微信
1. 中国科学院 微电子研究所, 北京 100029
2. 荷兰国家能源研究中心, 佩腾 荷兰
3. 西苏格兰大学 薄膜研究中心,英国
收稿日期:2013-06-03,
修回日期:2013-09-03,
纸质出版日期:2013-11-10
移动端阅览
崔冬萌, 贾锐, 丁武昌, 张烨, A. W. Weeber, 宋世庚. 梯度掺杂对n型异质结太阳能电池性能的影响[J]. 发光学报, 2013,34(11): 1505-1510
CUI Dong-meng, JIA Rui, DING Wu-chang, ZHANG-Steenwinkel mw Y, A. W. Weeber, SONG Shi-geng. Enhanced Photovoltaic Properties of n-type HIT Solar Cell by Gradient Doping[J]. Chinese Journal of Luminescence, 2013,34(11): 1505-1510
崔冬萌, 贾锐, 丁武昌, 张烨, A. W. Weeber, 宋世庚. 梯度掺杂对n型异质结太阳能电池性能的影响[J]. 发光学报, 2013,34(11): 1505-1510 DOI: 10.3788/fgxb20133411.1505.
CUI Dong-meng, JIA Rui, DING Wu-chang, ZHANG-Steenwinkel mw Y, A. W. Weeber, SONG Shi-geng. Enhanced Photovoltaic Properties of n-type HIT Solar Cell by Gradient Doping[J]. Chinese Journal of Luminescence, 2013,34(11): 1505-1510 DOI: 10.3788/fgxb20133411.1505.
通过仿真软件AFORS-HET对a-Si:H(p)/i-a-Si:H/c-Si(n)异质结太阳能电池的光伏特性进行分析及优化
主要对比了a-Si:H(p)层的均匀掺杂和表面掺杂浓度
D
1
=110
20
cm
-3
>
界面掺杂浓度
D
2
=410
19
cm
-3
的梯度掺杂情况时的光伏特性
实现了在梯度掺杂时22.32%的光电转换效率。与均匀梯度掺杂相比
发射层的梯度掺杂除了引入一个附加电场
还优化了能带结构、光谱响应、表面复合速率。结果表明
梯度掺杂可以有效地改善电池的光电转换性能。
In this paper
the analyzed and optimized of photovoltaic properties of a-Si:H(p)/i-a-Si: H/c-Si(n) heterojunction solar cell are simulated by the AFORS-HET software. Mainly compared the a-Si:H(p) uniformly doped layer and the surface doping concentration
D
1
= 110
20
cm
-3
interface doping concentration
D
2
= 410
19
cm
-3
gradient doping case of photovoltaic properties. The photovoltaic properties comparative and optimized were simulated by the AFORS-HET software. The conversion efficiency can reach 22.32% by gradient doping. Compared with the uniform-doping mode
the gradient doping not only introduced an additional electric field
but also optimized the energy band
spectral response and recombination rate. The simulation results show that the gradient doping can improve the photovoltaic performance of the solar cells efficiently.
Minemoto T, Julayhi J. Buffer-less Cu(In,Ga)Se2 solar cells by band offset control using novel transparent electrode [J]. Curr. Appl. Phys., 2013, 13(1):103-106.[2] Gorji N E, Reggiani U, Sandrolini L. A simple model for thephotocurrent density of a graded band gap CIGS thin film solar cell [J]. Solar Energy, 2012, 86(3):920-925.[3] Lpez N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells [J]. Phys. Rev. Lett., 2011, 106(2):028701-1-4.[4] Korte L, Conrad E and Schmidt M, et al. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells [J]. J. Appl. Phys., 2010, 107(2):023711-1-13.[5] Yan K, Wu D, Peng H L, et al. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation [J]. Nat. Commun., 2012, 3:1280-1-7.[6] Islam M M, Miyashita N, Ahsan N, et al. Identification of defect types in moderately Si-doped GaInNAsSb layer in p-GaAs/n-GaInNAsSb/n-GaAs solar cell structure using admittance spectroscopy [J]. J. Appl. Phys., 2012, 112(11):114910-1-9.[7] Guo X Y, Wang X H, Chang B K, et al. High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode [J]. Appl. Phys. Lett., 2010, 97(6):063104-1-3.[8] Zhang Y J, Chang B K, Yang Z, et al. Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy [J]. Chin. Phys. B, 2009, 18(10):4541-4546.[9] Chen L, Qian Y S, Zhang Y J, et al. Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures [J]. Chin. Phys. B, 2012, 21(3):034214-1-7.[10] Schmidt J, Bothe K, Bock R. N-type siliconthe better material choice for industrial high-efficiency solar cells[C]//22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007:3-7.[11] Pryce I M, Koleske D D, Fischer A J, et al. Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells [J]. Appl. Phys. Lett., 2010, 96(15):153501-1-3.[12] Pysch D, Meinhard C, Harder N P, et al. Analysis and optimization approach for the doped amorphous layers of silicon heterojunction solar cells [J]. J. Appl. Phys., 2011, 110(9):094516-1-8.[13] Schmidt J, Aberle A G, Hezelt L. Investigation of carrier lifetime instabilities in Cz-grown silicon[C]//26th IEEE PVSC.New York: IEEE, 1997:13.[14] Singh S, Kumar S, Dwivedi N. Band gap optimization of p-i-n layers of a-Si:H by computer aided simulation for development of efficient solar cell [J]. Solar Energy, 2012, 86(5):1470-1476.[15] Zhang C L, Du H J, Zhu J Z, et al. Enhanced photovoltaic properties of gradient doping solar cells [J]. Chin. Phys. Lett., 2012, 29(12):127305-1-4.
0
浏览量
69
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构