浏览全部资源
扫码关注微信
1. 中山大学理工学院 光电材料国家重点实验室,广东 广州,510000
2. 中国科学院 深圳先进技术研究院,广东 深圳,518055
3. 香港科技大学 物理系, 香港, 清水湾 九龙
收稿日期:2013-05-14,
修回日期:2013-07-24,
纸质出版日期:2013-11-10
移动端阅览
王玉超, 吴天准, 陈明明, 苏龙兴, 张权林, 汤子康. 分子束外延生长的极性与非极性BeZnO薄膜的比较研究[J]. 发光学报, 2013,34(11): 1483-1488
WANG Yu-chao, WU Tian-zhun, CHEN Ming-ming, SU Long-xing, ZHANG Quan-lin, TANG Zi-kang. Comparative Study of Polar and Non-polar BeZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy[J]. Chinese Journal of Luminescence, 2013,34(11): 1483-1488
王玉超, 吴天准, 陈明明, 苏龙兴, 张权林, 汤子康. 分子束外延生长的极性与非极性BeZnO薄膜的比较研究[J]. 发光学报, 2013,34(11): 1483-1488 DOI: 10.3788/fgxb20133411.1483.
WANG Yu-chao, WU Tian-zhun, CHEN Ming-ming, SU Long-xing, ZHANG Quan-lin, TANG Zi-kang. Comparative Study of Polar and Non-polar BeZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy[J]. Chinese Journal of Luminescence, 2013,34(11): 1483-1488 DOI: 10.3788/fgxb20133411.1483.
采用分子束外延设备在不同晶面蓝宝石衬底上(
c
面
a
面
r
面)生长BeZnO薄膜。使用复合缓冲层生长得到了高质量的BeZnO薄膜
X射线衍射半高宽达到600 arcsec。在
c
面与
a
面蓝宝石衬底上生长得到了极性BeZnO薄膜
在
r
面蓝宝石上生长得到了非极性BeZnO薄膜。共振拉曼光谱测试结果表明薄膜中的Be含量在同一水平。相对于
c
面与
a
面蓝宝石上的极性BeZnO薄膜
生长在
r
面蓝宝石衬底上的非极性BeZnO薄膜具有较大的表面粗糙度以及较大的半高宽
但是其光致发光谱中的紫外发光峰远远强于极性BeZnO薄膜
并且黄绿光发光峰弱于极性BeZnO薄膜。
BeZnO films were grown on different crystallographic planes (
c-
a
- and
r
-planes) of sapphire substrates using plasma-assisted molecular beam epitaxy (P-MBE). High quality BeZnO films were achieved using a multi-layer buffer design with full widths at half maximum (FWHMs) of rocking curves up to 600 arcsec. Polar BeZnO films were obtained on the
a-
and
c-
plane sapphire substrates
while the nonpolar ones were obtained on the
r
-plane sapphire substrate. The Raman spectroscopy confirmed the Be dopants in the ZnO were at the same level in three samples. The BeZnO sample grown on the
r
-sapphire substrate were found to have largest grains and higher FWHM
while the ones grown on
a-
and
c-
sapphire subatrates had the similar fine grains and lower FWHM. However
the photoluminescence (PL) spectra indicated the non-polar BeZnO sample had significantly stronger ultraviolet emission and weaker green emission than polar samples.
Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72(25):3270-3272.[2] Fan X W. Research progress on growth and optical properties of wide band gap Ⅱ-Ⅵ compound semiconductors and its low dimensional structure [J]. Chin. J. Lumin.(发光学报), 2002, 23(4):317-324 (in Chinese).[3] Look D C. Recent advances in ZnO materials and devices [J]. Mater. Sci. Eng. B, 2001, 80(1-3):383-387.[4] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4(1):42-46.[5] Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO [J]. Prog. Mater. Sci., 2005, 50(3):293-340.[6] zgr V, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98 (4):041301-1-102.[7] Kim W J, Leem J H, Han M S, et al. Crystalline properities of wide band gap BeZnO films [J]. J. Appl. Phys., 2006, 99(9):096104-1-4.[8] Yang C, Li X M, Gu Y F, et al. ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV [J]. Appl. Phys. Lett., 2008, 93(11):112114-1-3.[9] Ryu Y R, Lee T S, Lubguban J A, et al. Wide-band gap oxide alloy:BeZnO [J]. Appl. Phys. Lett., 2006, 88(5):052103-1-3.[10] Waag A, Fischer F, Lugauer H J, et al. Molecular beam epitaxy of beryllium chalcogenide based thin films and quantum well structures [J]. J. Appl. Phys., 1996, 80(2):792-796.[11] Ding S F, Fan G H, Li S T, et al. Theoretical study of BexZn1-xO alloys [J]. Phys. B, 2007, 394(1):127-131.[12] Pang H X, Liu C Z, Xie A, et al. Effect of annealing temperature on structure and optical properties of sheet-like ZnO crystals [J]. Chin. J. Liq. Cryst. Disp. (液晶与显示), 2012, 27(2):158-162 (in Chinese).[13] Yu J H, Kim J H, Yang H J, et al. Wide band-gap investigation of modulated BeZnO layers via photocurrent measurement [J]. J. Mater. Sci., 2012, 47(14):5529-5534.[14] Tang X, Deng Y Z, Wagner D, et al. Possible approach to fabricate p-type ZnO through the Be-N codoping method: First-principles calculations [J]. Solid State Commun., 2012, 152(1):1-4.[15] Neugebauer J, Van de Walle, Chris G. Chemical trends for acceptor impurities in GaN [J]. J. Appl. Phys., 1999, 85(5):3003-3005.[16] Li J B, Wei S H, Li S S, et al. Design of shallow acceptors in ZnO:First-principles band-structure calculations [J]. Phys. Rev. B, 2006, 74(8):08201-1-4.[17] Chen M M, Zhang Q L, Su L X, et al. ZnO film with ultra-low background electron concentration grown by plasma-assisted MBE using Mg film as the buffer layer [J]. Mater. Res. Bull., 2012, 47(9):2673-2675.[18] Zuniga Perez J, Munoz Sanjose V, Lorenz M, et al. Structural characterization of a-plane Zn1-xCdxO (0x0.085) thin films grown by metal-organic vapor phase epitaxy [J]. J. Appl. Phys., 2006, 99(2):023514-1-7.[19] Kaschner A, Haboeck U, Strassburg Martin, et al. Nitrogen-related local vibrational modes in ZnO[DK]∶N [J]. Appl. Phys. Lett., 2002, 80(11):1909-1911.[20] Bundesman C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett., 2003, 83(10):1974-1976.[21] Huang Y, Liu M, Li Z, et al. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process [J]. Mater. Sci. Eng. B, 2003, 97(2):111-116.[22] Jin B J, Im S, Lee S Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition [J]. Thin Solid Films, 2000, 366(1-2):107-110.[23] Shi X F, Guo M X, Liu H F, et al. Influence of sputtering pressure on properties of Ti, Ga co-doped zinc oxide thin films[J]. Chin. J. Liq. Cryst. Disp. (液晶与显示), 2011, 26(1):54-58 (in Chinese).[24] Jin B J, Bae S H, Lee S Y, et al. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition [J]. Mater. Sci. Eng. B, 2002, 71(1-3):301-305.[25] Zhang B P, Binh N T, Segawa Y, et al. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (1120) substrates [J]. Appl. Phys. Lett., 2004, 84(4):586-588.[26] Shi K, Yang A L, Wang J, et al. The effect of different oriented sapphire substrates on the growth of polar and non-polar ZnMgO by MOCVD [J]. J. Cryst. Growth, 2011, 314(1):39-42.[27] Ding P, Pan X H, Huang J Y, et al. Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy [J]. Mater. Lett., 2012, 71:18-20.[28] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68(3):403-405.[29] Fon P S, Iwata K, Niki S, et al. Uniaxial locked growth of high-quality epitaxial ZnO films on (1120)-Al2O3 [J]. J. Cryst. Growth, 2000, 209(2-3):532-536.[30] Wu C X, Lu Y M, Li B H, et al. Structure and optical properties of MgxZn1-xO single-crystal thin films grown by P-MBE [J]. Chin. J. Lumin. (发光学报), 2004, 25(3):277-281 (in Chinese).[31] Heo Y W, Norton D P, Pearton S J. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy [J]. J. Appl. Phys., 2005, 98(7):073502-1-7.
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构