浏览全部资源
扫码关注微信
陕西科技大学 电气与信息工程学院,陕西 西安,710021
收稿日期:2013-06-21,
修回日期:2013-07-17,
纸质出版日期:2013-11-10
移动端阅览
袁桃利, 张方辉, 张微, 黄晋. 空穴传输层对有机电致发光器件性能的影响[J]. 发光学报, 2013,34(11): 1457-1461
YUAN Tao-li, ZHANG Fang-hui, ZHANG Wei, HUANG Jin. The Electroluminescent Performance of OLED Based on Different Hole Transport Layer[J]. Chinese Journal of Luminescence, 2013,34(11): 1457-1461
袁桃利, 张方辉, 张微, 黄晋. 空穴传输层对有机电致发光器件性能的影响[J]. 发光学报, 2013,34(11): 1457-1461 DOI: 10.3788/fgxb20133411.1457.
YUAN Tao-li, ZHANG Fang-hui, ZHANG Wei, HUANG Jin. The Electroluminescent Performance of OLED Based on Different Hole Transport Layer[J]. Chinese Journal of Luminescence, 2013,34(11): 1457-1461 DOI: 10.3788/fgxb20133411.1457.
制备了结构为ITO/MoO
3
(40 nm)/空穴传输层/CBP:Ir(ppy)
2
acac(8%)(30 nm)/BCP(10 nm)/Alq
3
(40 nm)/LiF(1 nm)/Al(100 nm)的器件
其中Ir(ppy)
2
acac为绿色磷光染料
空穴传输层分别为TAPC(50 nm)、TAPC(40 nm)/TCTA(10 nm)、NPB(50 nm)、NPB(40 nm)/TCTA(10 nm)。通过使用4种不同结构的空穴传输层
对器件的发光性能进行了研究。结果表明
空穴传输层对器件的发光性能有较大影响。在电压为6 V、电流密度为2 mA/cm
2
的条件下
4种结构的器件的电流效率分别为52.5
67.8
35.6
56.6 cd/A。其原因是TAPC/TCTA及NPB/TCTA能级结构更有利于空穴对发光层的注入而且TAPC拥有较高的空穴迁移率;另外
TAPC及TCTA拥有较高的LUMO和三线态能量
可以有效地将电子和三线态激子束缚在发光层内
增加绿光染料的复合发光几率。所制备的器件均表现出良好的色坐标稳定性。
Green phosphorescent organic light emitting diodes were fabricated utilizing Ir(ppy)
2
acac phosphorescent materials. The device structure was ITO/MoO
3
(40 nm)/hole transport layer/CBP: Ir(ppy)
2
acac(8%)(30 nm)/BCP(10 nm)/Alq
3
(40 nm)/LiF(1 nm)/Al(100 nm)
the hole transport layers were TAPC(50 nm)
TAPC(40 nm)/TCTA(10 nm)
NPB(50 nm)
and NPB(40 nm)/TCTA(10 nm)
respectively. The electroluminescent properties were studied by using different hole transport layer. The current efficiency of these devices achieve 52.5
67.8
35.6
and 56.6 cd/A at 6 V
respectively. The reasons are that the stepwise holes injection layers and high hole mobility make holes inject and transport to emitting layer more easily. Moreover
the high triplet energy level blocking layers confine the carriers and excitons in emitting layer. Besides
the color coordinates of all devices are stable.
Reyes R, Cremona M, Teotonio E E S, et al. Molecular electrophosphorescence in (Sm,Gd)-b-diketonate complex blend for OLED applications [J]. J. Lumin., 2013, 134(8):369-373.[2] Meng T F, He Z Q, Liu S, et al. Towards color stable three-band white organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2012, 33(10):1095-1100 (in Chinese).[3] Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electro- luminescence in organic light-emitting diodes incorporating Au nanoparticles [J]. Appl. Phys. Lett., 2012, 100(6):013308-1-4.[4] Yang Q, Hao Y Y, Wang Z G, et al. Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime [J]. Synth. Metals, 2012, 162(1):398-401.[5] Su S J, Cai C, Takamatsu J, et al. A host material with a small singlet-triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission [J]. Org. Electron., 2012, 13(6):1937-1947.[6] Krucaite G, Griniene R, Mazetyte D, et al. 3-aryl substituted 9-alkylcarbazoles as tailored building blocks for hole transporting materials of OLEDs [J]. Synth. Metals, 2012, 162(4):1079-1083.[7] Lv Y F, Zhou P C, Wei N, et al. Improved hole-transporting properties of Ir complex-doped organic layer for high-efficiency organic light-emitting diodes [J]. Org. Electron., 2013, 14(10):124-130.[8] Yun C H, Lee J, Lee J, et al. Influence of phosphorescent dopants in organic light-emitting diodes with an organic homojunction [J]. Appl. Phys. Lett., 2012, 101(24):243303-1-3.[9] Park J S, Jeon W S, Yu J H, et al. Bipolar Alq3-based complexes: Effect ofhole-transporting substituent on theproperties of Alq3-center [J]. J. Lumin., 2012, 132(4):2427-2432.[10] Meunmart D, Prachumrak N, Keawin T, et al. Bis(4-diphenylaminophenyl)carbazole end-capped fluorene as solution-processed deep-blue light-emitting and hole- transporting materials for electroluminescent devices [J]. Tetrahedron Lett., 2012, 53(5):3615-3618.[11] Wang X, Yu J S, Zhao J, et al. Comparison of electron transporting layer in white OLED with a double emissive layer structure [J]. Displays, 2012, 33(10):191-194.[12] Kim K, Hong K, Lee I, et al. Electron injection in magnesium-doped organic light-emitting diodes [J]. Appl. Phys. Lett., 2012, 101(14):141102-1-4.[13] Yook K S, Lee J Y. The relationship between the host structure and optimum doping concentration in red phosphorescent organic light-emitting diodes [J]. Thin Solid Films, 2011, 519(2):4342-4346.[14] Gao C H, Zhou D Y, Gu W, et al. Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers [J]. Org. Elect., 2013, 14(2):1177-1182.
0
浏览量
91
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构