浏览全部资源
扫码关注微信
河南大学物理与电子学院 光伏材料省重点实验室,河南 开封,475004
收稿日期:2013-07-07,
修回日期:2013-07-24,
纸质出版日期:2013-11-10
移动端阅览
陈菊, 丁玲红, 张伟风. <em>Ln</em><sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>:Er<sup>3+</sup>纳米晶的制备及发光性能研究[J]. 发光学报, 2013,34(11): 1451-1456
CHEN Ju, DING Ling-hong, ZHANG Wei-feng. Preparation and Up-conversion Emissions of Er<sup>3+</sup> Doped <em>Ln</em><sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(11): 1451-1456
陈菊, 丁玲红, 张伟风. <em>Ln</em><sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>:Er<sup>3+</sup>纳米晶的制备及发光性能研究[J]. 发光学报, 2013,34(11): 1451-1456 DOI: 10.3788/fgxb20133411.1451.
CHEN Ju, DING Ling-hong, ZHANG Wei-feng. Preparation and Up-conversion Emissions of Er<sup>3+</sup> Doped <em>Ln</em><sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(11): 1451-1456 DOI: 10.3788/fgxb20133411.1451.
采用溶胶-凝胶法合成
Ln
2
Sn
2
O
7
:Er
3+
(
Ln
=La
Gd
Y)纳米晶。通过X射线衍射和场发射扫描电子显微镜测试了样品的晶体结构和形貌
同时对样品的上转换发光性能进行了测试。结果表明:在980 nm连续激发光的激发下
样品主要表现为绿光发射。发射中心在528
549 nm的绿光和672 nm处的红光发射分别对应Er
3+
离子的
4
S
3/2
4
I
15/2
、
2
H
11/2
4
I
15/2
和
4
F
9/2
4
I
15/2
跃迁。以La
2
Sn
2
O
7
:Er
3+
纳米晶为例
Er
3+
离子的摩尔分数为7%、退火温度为1 150℃是其制备的最佳条件
此时其各个发射峰的强度最高。对La
2
Sn
2
O
7
:Er
3+
的发光强度与激发功率关系的研究表明
其绿光和红光发射均为双光子过程。激发光吸收和能量转移是La
2
Sn
2
O
7
:Er
3+
纳米晶上转换发光的主要机制。
Er
3+
doped
Ln
2
Sn
2
O
7
(
Ln
=La
Gd
Y) nanocrystals were fabricated by sol-gel method. The crystal structure and morphologies were investigated by XRD and SEM
and the up-conversion spectroscopic properties of the samples were also investigated. Under the excitation of a 980 nm diode laser
the samples mainly emit bright green light. The strong green and red up-conversion emissions which centered at 549
528
and 672 nm
respectively. They were assigned to the transitions of
2
H
11/2
4
I
15/2
4
S
3/2
4
I
15/2
and
4
F
9/2
4
I
15/2
energy levels of Er
3+
ions. Taking La
2
Sn
2
O
7
:Er
3+
nanocrystal for example
the most efficient up-conversion emission can be obtained when the annealing temperature is 1 150℃ and the mole fraction of Er
3+
is 7%. The dependence of the intensity of up-conversion emissions upon the excitation power of the diode laser suggests that two-photon absorption processes are involved in the green and red up-conversion luminescence. The excited state absorption and energy transfer process are regarded as the main up-conversion emission mechanism of La
2
Sn
2
O
7
:Er
3+
nanocrystals.
Chen Z J, Tian D B. First-principles study of disordering tendencies in Gd2B2O7(B=Ti, Sn, Zr) compounds [J]. Chin. Phys. B, 2010, 19(12):1-7.[2] Wills A S, Zhitomirsky M E, Canals B, et al. Magnetic ordering in Gd2Sn2O7: The archetypal Heisenberg pyrochlore antiferromagnet [J]. J. Phys.: Condensed Matter, 2006, 18(3):L37-L42.[3] Sung H W, Claudia C, Yuri L Z, et al. Phase stability of cubic pyrochlore rare earth tantalate pinning additives in YBa2Cu3O7- superconductor [J]. J. Am. Ceram. Soc., 2012, 95(4):1174-1177.[4] Mims C A, Jacobson A J, Hall R B, et al. Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts [J]. J. Catal., 1995, 153:197-207.[5] Kim N, Grey C P. O-17 MAS NMR study of the oxygen local environments in the anionic conductors Y2(B1-xB' x)2O7 (B, B'=Sn, Ti, Zr) [J]. J. Solid State Chem., 2003, 175(1):110-115.[6] Wuensch B J, Eberman K W, Heremans C, et al. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature [J]. Solid State Ionics, 2000, 129(1):111-133.[7] Sharma N, Rao G V S, Chowdari B V R. Anodic properties of tin oxides with pyrochlore structure for lithium ion batteries [J]. J. Power Sources, 2006, 159(1):340-344.[8] Geisler T, Poml P, Stephan T, et al. Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore [J]. Am. Mineral., 2005, 90(10):1683-1687.[9] Matteucci F, Cruciani G, Dondi M, et al. Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores [J]. Acta Materialia, 2007, 55(7):2229-2238.[10] Lian J, Helean K B, Kennedy B J, et al. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation [J]. J. Phys. Chem. B, 2006, 110(5):2343-2350.[11] Park Y I, Kim J H, Lee K T, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent [J]. Adv. Mater., 2009, 21(44):4467-4471.[12] Wu X J, Zhang Q B, Wang X, Y, et al. One-pot synthesis of carboxyl-functionalized rare earth fluoride nanocrystals with mono-dispersity, ultrasmall size and very bright luminescence [J]. Eur. J. Inorg. Chem., 2011, 2011(13):2158-2163.[13] Cheng H, Wang L P, Lu Z G. A general aqueous sol-gel route to Ln2Sn2O7 nanocrystals [J]. Nanotechnology, 2008, 19(2):025706-1-5.[14] Wang S M, Lu M K, Zhou G J, et al. Synthesis and luminescence properties of La2-xRExSn2O7(RE=Eu and Dy) phosphor nanoparticles [J]. Mater. Sci. Eng. B, 2006, 133(1-3):231-234.[15] Wang S M, Xiu Z L, Lu M K, et al. Combustion synthesis and luminescent properties of Dy3+ doped La2Sn2O7 nanocrystals [J]. Mater. Sci. Eng. B, 2007, 143(1-3):90-93.[16] Li K W, Wang H, Yan H. Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals [J]. J. Mol. Catal. A: Chem., 2006, 249(1-2):65-70.[17] Zeng J, Wang H, Zhang Y C, et al. Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes [J]. J. Phys. Chem. C, 2007, 111(32):11879-11887.[18] Fu Z L, Yang H K, Moon B K, et al. La2Sn2O7:Eu3+ micronanospheres: Hydrothermal synthesis and luminescent properties [J]. Cryst. Growth Des., 2009, 9(1):616-621.[19] Lide D R, Editor-in-chief. CRC Handbook of Chemistry and Physics [M]. England:Taylor & Francis 2000.[20] Zhang A Y, Lu M K, Yang Z S, et al. Systematic research on RE2Zr2O7(RE= La, Nd, Eu and Y) nanocrystals:Preparation, structure and photoluminescence characterization [J]. Solid State Sci., 2008, 10(1):74-81.[21] Kumar G A, De la Rosa E, Desirena H. Radiative and non radiative spectroscopic properties of Er3+ ion in tellurite glass [J]. Opt. Commun., 2006, 260(2):601-606.[22] Kim H G, Hwang D W, Bae S W, et al. Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method [J]. Catal. Lett., 2003, 91(3-4):193-198.[23] Greedan J E, Gout D, Lozano-Gorrin A D, et al. Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis [J]. Phys. Rev. B, 2009, 79(1):014427-1-6.[24] Hua X L, Chen J Z, Zhuang N F, et al. Growth and spectrum properties of Yb:GdVO4 single crystal [J]. J. Cryst. Growth, 2003, 256(3-4):328-333.[25] Pang X L, Jia C H, Li G Q, et al. Bright white upconversion luminescence from Er3+-Tm3+-Yb3+ doped CaSnO3 powders [J]. Opt. Mater., 2011, 34:234-238.[26] Pang T, Cao W H. Up-conversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped YTaO4 [J]. Chin. Sci. Bull.(科学通报), 2008, 53(2):178-182 (in Chinese).
0
浏览量
52
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构