浏览全部资源
扫码关注微信
南华大学 核科学技术学院, 湖南 衡阳 421001
收稿日期:2013-06-21,
修回日期:2013-07-12,
纸质出版日期:2013-10-10
移动端阅览
徐继圆, 左国平, 周剑良. 表面微结构辐射器几何结构对发射性能的影响[J]. 发光学报, 2013,34(10): 1386-1391
XU Ji-yuan, ZUO Guo-ping, ZHOU Jian-liang. Influence of Physical Dimension of The Mircostructural Surface Emitters on Emission Performance[J]. Chinese Journal of Luminescence, 2013,34(10): 1386-1391
徐继圆, 左国平, 周剑良. 表面微结构辐射器几何结构对发射性能的影响[J]. 发光学报, 2013,34(10): 1386-1391 DOI: 10.3788/fgxb20133410.1386.
XU Ji-yuan, ZUO Guo-ping, ZHOU Jian-liang. Influence of Physical Dimension of The Mircostructural Surface Emitters on Emission Performance[J]. Chinese Journal of Luminescence, 2013,34(10): 1386-1391 DOI: 10.3788/fgxb20133410.1386.
放射性同位素热光伏系统(RTPV)中表面微结构辐射器几何尺寸是决定其发射性能和系统效率的关键因素之一。本文通过对单个钨微腔宽度、高度以及壁厚对辐射器发射性能影响的探讨
初步得出了其红外辐射出射特点的产生原因
并利用时域有限差分算法(FDTD)对不同几何尺寸微腔的发射性能进行了对比。最后结合GaSb量子效率曲线
发现当微腔高度、宽度与壁厚分别为0.8
1.8
0.1 m时
其发射性能与GaSb匹配程度较好。
The physical dimension of mircostructural surface emitters is one of the key factors which determines the emission performance and system efficiency in radioisotope thermophotovoltaic (RTPV) systems. This paper preliminarily concluded the reasons for the emitters' characteristics of infrared radiation through the exploration of the effects that the width
height and walls' thickness of a single tungsten mircocavity played on the radiator's emission performance. Then the finite-different-time-domain (FDTD) method was utilized to compare the emission performance of microcavities with different sizes. It is found that the emission performance matches well in the GaSb case taking into account of the efficiency curve of GaSb which the width
height and walls' thickness of a single mircocavity are set as 0.8
1.8
0.1 m
respectively.
Geng X. Feasibility Analysis of TPV Technology During Re-entry Process and Preparation of Selective Emitter. Hefei: University of Science and Technology of China, 2011 (in Chinese).[2] Yang G. The Spectral Control Properties of Representative Micronstructure and Their Application. Harbin: Harbin Institute of Technology, 2011 (in Chinese).[3] Heinzel A, Boerner V, Gombert A, et al. Microstructured tungsten surfaces as selective emitters [J]. AIP Conf. Proc., 1999, 460:191-196.[4] Maruyama S, Kashiwa T, Yugami H, et al. Thermal radiation from two-dimensionally confined modes in microcavities [J]. Appl. Phys. Lett., 2001, 79(9):1393-1395.[5] Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures [J]. J. Micromech. Microeng., 2005(15):243-249.[6] Celanovic I, Jovanovic N, Kassakian J. Two-dimensional tungsten photonic crystals as selective thermal emitters [J]. Appl. Phys. Lett., 2008, 92(19):193101-1-3.[7] Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation [J]. Appl. Phys. Lett., 2003, 83(2):380-382.[8] Liu G P, Han Y G, Li Q, et al. Theoretical method for simulating thermal spectral properties of microstructured surface [J]. J. Eng. Thermophys.(工程热物理学报), 2009, 30(1):111-114 (in Chinese).[9] Liu G P. Thermal Radiation Spectral Control Properties of Microstructure and Their Application. Nanjing: Nanjing University of Science & Technology, 2008 (in Chinese).[10] Liu R S. Study on The Preparation and Properties of Rare-earth Photonic-crystal Emitter. Changsha: National University of Defense Technology, 2008 (in Chinese).[11] Ma F Y, Su J P, Guo M T. Study on the angular dependence of metal mirror microcavities [J]. J. OptoelectronicsLaser(光电子激光), 2010, 21(7):974-977 (in Chinese).[12] Yugami H, Sasa H, Yamaguchi M. Thermophotovoltaic systems for civilian and industrial applications in Japan [J]. Semiconductor Science and Technology, 2003, 18(5):S239-S246.[13] Zhou B K, Gao Y Z, Chen C R, et al. Laser Principle [M]. 5th ed. Beijing: National Defense Industry Press, 2004 (in Chinese).[14] Fang R C. Solid State Spectroscopy [M]. Hefei: Press of University of Science and Technology of China, 2003:1-10 (in Chinese).[15] Fraas L M, Samaras J E, Huang H X, et al. TPV generators using the radiant tube burner configuration [J]. Proc. 17th European PV Solar Energy Conf.(Munich, Germany, 22-6 Oct), 2001.[16] Sai H, Kamikawa T, Kanamori Y, et al. Thermophotovoltaic generation with microstructured tungsten selective emitters [J]. AIP Conf. Proc., 2004(738):206-214.
0
浏览量
255
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构