浏览全部资源
扫码关注微信
1. 华南师范大学光电子材料与技术研究所 微纳功能材料与器件重点实验室,广东 广州,510631
2. 中山大学 光电子材料与技术国家重点实验室,广东 广州,510275
收稿日期:2013-05-20,
修回日期:2013-07-25,
纸质出版日期:2013-10-10
移动端阅览
章敏杰, 梅霆, 王乃印, 朱凝, 王达飞, 李浩, 文洁. 三明治结构电子阻挡层中势阱深度对LED性能的影响[J]. 发光学报, 2013,34(10): 1367-1372
ZHANG Min-jie, MEI Ting, WANG Nai-yin, ZHU Ning, WANG Da-fei, LI Hao, WEN Jie. Effect of Well Depth of Sandwich Electron-blocking Layer on The Performance of Blue Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(10): 1367-1372
章敏杰, 梅霆, 王乃印, 朱凝, 王达飞, 李浩, 文洁. 三明治结构电子阻挡层中势阱深度对LED性能的影响[J]. 发光学报, 2013,34(10): 1367-1372 DOI: 10.3788/fgxb20133410.1367.
ZHANG Min-jie, MEI Ting, WANG Nai-yin, ZHU Ning, WANG Da-fei, LI Hao, WEN Jie. Effect of Well Depth of Sandwich Electron-blocking Layer on The Performance of Blue Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(10): 1367-1372 DOI: 10.3788/fgxb20133410.1367.
在LED中引入了Al
0.1
Ga
0.9
N-Al
x
Ga
1-
x
N-Al
0.1
Ga
0.9
N多层电子阻挡层
并讨论结构中插入的势阱深度(即中间层Al
x
Ga
1-
x
N的Al组分"
x
")的变化对LED性能带来的影响。研究发现
具有三明治结构电子阻挡层(EBL)的LED比传统LED具有更好的发光特性
并且其性能与电子阻挡层中的势阱深度密切相关。究其原因
一是由于电子阻挡层内部不同程度的晶格失配而引入的极化电场引起了电子阻挡层的有效势垒高度的不同;二是在于电子阻挡层中的势阱所产生的空穴聚集效应也会随着势阱深度的变化而变化。故而使得空穴注入效率和电子阻挡层对电子的限制作用在不同势阱深度的LED样品中有所不同。
Blue light-emitting diodes (LEDs) with the Al
0.1
Ga
0.9
N-Al
x
Ga
1-
x
N-Al
0.1
Ga
0.9
N sandwich electron blocking layers (EBLs) are investigated numerically. The simulation results show that the LEDs with the sandwich EBLs exhibit better performance
which is closely related to the depth of the inserted well (denoted as
x
of Al
x
Ga
1-
x
N). The performance differences are attributed to the different levels of the electron confinement and hole injection efficiency
which is due to the different degree of the energy band modulation and hole gathering effect in the sandwich EBLs.
Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence [J]. Appl. Phys. Lett., 2007, 91(14):141101-1-3.[2] Kim M, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2007, 91(18):183507-1-3.[3] Rozhansky I V, Zakheim D A. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping [J]. Phys. State Solidi (a), 2007, 204(1):227-230.[4] David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes [J]. Appl. Phys. Lett., 2008, 92(5):053502-1-3.[5] Han S H, Lee D Y, Lee S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes [J]. Appl. Phys. Lett., 2009, 94(23):231123-1-3.[6] Mukai T, Yamada M, Nakamura S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes [J].Jpn. J. Appl. Phys. Lett., 1999, 38(7A):3976-3981.[7] Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2007, 91(18):183507-1-3.[8] Han S H, Lee D Y, Lee S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes [J]. Appl. Phys. Lett., 2009, 94(23):231123-1-3.[9] Wang C H, Ke C C, Lee C Y, et al. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Appl. Phys. Lett., 2010, 97(26):261103-1-3.[10] Zhang L, Wei X C, Liu N X, et al. Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2011, 98(24):241111-1-3.[11] Kuo Y K, Chen J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer [J]. Opt. Lett., 2010, 35(19):3285-3287.[12] Choi S, Kim H J, Kim S S, et al. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer [J]. Appl. Phys. Lett., 2010, 96(22):221105-1-3.[13] Ghazai A J, Thahab S M, Abu H H. Quaternary ultraviolet AlInGaN MQW laser diode performance using quaternary AlInGaN electron blocking layer [J]. Opt. Exp., 2011, 19(10):9245-9254.[14] Zhang Y Y, Yin Y A. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer [J]. Appl. Phys. Lett., 2011, 99(22):221103-1-3.[15] Xia C S, Lu W, Zhang Z, et al. Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer [J]. J. Appl. Phys., 2012, 111(9):094503-1-5.[16] Stringfellow G B, Craford M G. High Brightness Light Emitting Diodes [M]. San Diego: Academic Press, 1997:412.[17] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors [J]. J. Appl. Phys., 2003, 94(6):3675-3696.
0
浏览量
139
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构