浏览全部资源
扫码关注微信
上海交通大学 薄膜与微细技术教育部重点实验室 微纳科学技术研究院 上海,200240
收稿日期:2013-06-04,
修回日期:2013-06-24,
纸质出版日期:2013-10-10
移动端阅览
严兴茂, 王庆康. CdSe/ZnSe/ZnS量子点在单晶太阳能电池中的应用[J]. 发光学报, 2013,34(10): 1358-1361
YAN Xing-mao, WANG Qing-kang. Application of CdSe/ZnSe/ZnS Quantum Dots in Monocrystalline Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(10): 1358-1361
严兴茂, 王庆康. CdSe/ZnSe/ZnS量子点在单晶太阳能电池中的应用[J]. 发光学报, 2013,34(10): 1358-1361 DOI: 10.3788/fgxb20133410.1358.
YAN Xing-mao, WANG Qing-kang. Application of CdSe/ZnSe/ZnS Quantum Dots in Monocrystalline Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(10): 1358-1361 DOI: 10.3788/fgxb20133410.1358.
将CdSe/ZnSe/ZnS量子点掺入到聚甲基丙烯酸甲酯(PMMA)中
研究了量子点的发光下转移特性。将420 nm长波滤光片盖在单晶电池上
使电池对300~420 nm波段光谱响应几乎为零
同时排除下转移层抗反射效应的影响
再在滤光片表面制备下转移层
观察到了外量子效率(EQE)值的提升
说明所用量子点可以应用于对300~420 nm波段光谱响应几乎为零的电池上实现频率的下转移
提高EQE。对量子点在太阳能电池中应用的可能性进行了分析
并根据本实验中测得电池的EQE数据
计算了该电池获得提升所需量子点最低的整体荧光量子效率值为87.8%。
The luminescent down-shifting characteristics of CdSe/ZnSe/ZnS core/shell/shell quantum dots (QDs) were studied by incorporating the QDs as the down-shifting luminescent material into polymethyl-methacrylate (PMMA). Firstly
the optical high-pass filter with threshold 420 nm was used to cover the solar cell
so as to make the spectral response of the cell almost zero in the waveband range of 300~420 nm. Then the luminescent down-shifting (LD) layer of QDs was prepared on the external surface of the optical filters
we found the external quantum efficiency (EQE) of solar cell improved. This indicates that LD layer can realize the down-shifting of frequency spectra at 300~420 nm
which is out of the spectral response region of the normal cell. Finally
in order to analyze the possibility of applying quantum dots to solar cells
the minimum fluorescence quantum efficiency (FQE) of the quantum dots was calculated to be 87.8% according to the measured EQE of solar cell.
Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells [J]. J. Appl. Phys., 1980, 51(8):4494-4499.[2] Shalav A, Richards B S, Green M A. Luminescent layers for enhanced silicon solar cell performance: Up-conversion [J]. Solar Energy Materials and Solar Cells, 2007, 91(9):829-842.[3] Trupke T, Green M A, Wrfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3):1668-1672.[4] Jiang C F, Huang W J, Ding M Y, et al. Synthesis and luminescence properties of -NaYF4 doped with Eu3+ and Tb3+ [J]. Chin. J. Lumin.(发光学报), 2012, 33(7):683-687 (in Chinese).[5] Klampaftis E, Ross D, McIntosh K R, et al. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review [J]. Solar Energy Materials and Solar Cells, 2009, 93(8):1182-1194.[6] Pi X D, Li Q, Li D S, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency [J]. Solar Energy Materials and Solar Cells, 2011, 95(10):2941-2945.[7] Cheng Z J, Su F F, Pan L K, et al. CdS quantum dot-embedded silica film as luminescent down-shifting layer for crystalline Si solar cells [J]. J. Alloys Compds., 2010, 494(1-2):L7-L10.[8] Van Sark W, Meijerink A, Schropp R E I, et al. Enhancing solar cell efficiency by using spectral converters [J]. Solar Energy Materials and Solar Cells, 2005, 87(1-4):395-409.[9] McIntosh K R, Lau G, Cotsell J N, et al. Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer [J]. Progress in Photovoltaics: Research and Applications, 2009, 17(3):191-197.[10] Rothemund R, Kreuzer S, Umundum T, et al. External quantum efficiency analysis of Si solar cells with Ⅱ-Ⅵ nanocrystal luminescent down-shifting layers [J]. Energy Procedia, 2011, 10(1):83-87.[11] Talapin D V, Mekis I, Gtzinger S, et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals [J]. J. Phys. Chem. B, 2004, 108(49):18826-18831.[12] Xiong S Z, Zhu M F. Fundamentals and Applications of Solar Cells [M]. Beijing: Science Press, 2009:617-618.
0
浏览量
149
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构