CHEN Gui-chu, FAN Guang-han. Transient Analysis of InGaN/GaN Light-emitting Diode with Varied Quantum Well Number[J]. Chinese Journal of Luminescence, 2013,34(10): 1346-1350
CHEN Gui-chu, FAN Guang-han. Transient Analysis of InGaN/GaN Light-emitting Diode with Varied Quantum Well Number[J]. Chinese Journal of Luminescence, 2013,34(10): 1346-1350 DOI: 10.3788/fgxb20133410.1346.
A rate equation model for static and dynamic behavior of InGaN/GaN light-emitting diode (LED) has been developed
and the model has been implemented on a SPICE circuit emulator. The model's parameters have been achieved by fitting simulated results with reported experimental data. The transient response of InGaN LEDs has been comparatively investigated by varying the number of quantum wells in their active region. The simulations show that the rise time of optical outpower increases with the number of wells
and the active region composed of three quantum wells is the optimized structure.
关键词
Keywords
references
Shakya J, Knabe K, Kim K H, et al. Polarization of Ⅲ-nitride blue and ultraviolet light-emitting diodes [J]. Appl. Phys. Lett., 2005, 86(9):091107-1-3. [2] Li J, Lin J Y, Jiang H X. Growth of Ⅲ-nitride photonic structures on large area silicon substrates [J]. Appl. Phys. Lett., 2006, 88(17):171909-1-3. [3] Fan Y P, Cheng L W, Lin Y M, et al. Optimization of electrode shape for high power GaN-based light-emitting diodes [J]. Optoelectron. Lett., 2009, 5(5):0337-0340. [4] Kim K S, Kim J H, Jung S J, et al. Stable temperature characteristics of InGaN blue light emitting diodes using AlGaN/GaN/InGaN superlattices as electron blocking layer [J]. Appl. Phys. Lett., 2010, 96(9):091104-1-3. [5] Shi J W, Huang H Y, Sheu J K, et al. The improvement in modulation speed of GaN-based green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication [J]. IEEE Photon. Technol. Lett., 2006, 18(15):1636-1638. [6] Shi J W, Chen P Y, Chen C C, et al. Linear cascade GaN-based green light-emitting diodes with invariant high-speed power performance under high-temperature operation [J]. IEEE Photon. Technol. Lett., 2008, 20(23):1896-1898. [7] Ryu H Y, Kim H S, Shim J I. Rate equation analysis of efficiency droop in InGaN light-emitting diodes [J]. Appl. Phys. Lett., 2009, 95(8):081114-1-3. [8] Baba T, Hamano T, Koyama F, et al. Spontaneous emission factor of a microcavity DBR surface-emitting laser [J]. IEEE J. Quan. Electron., 1991, 21(6):1347-1358. [9] Tsang W T. Semiconductor Injected Lasers and Light Emitting Diodes [M]. Beijing: Press of Tsinghua university, 1991. [10] Yen S H, Tsai M C, Tsai M L, et al. Effect of n-type AlGaN layer on carrier transportation and efficiency droop of blue InGaN light-emitting diodes [J]. IEEE Photon. Technol. Lett., 2009, 21(14):975-977. [11] Kuo Y K, Tsai M C, Yen S H, et al. Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes [J]. IEEE Quant. Electron., 2010, 46(8):1214-1220. [12] Suzuki A, Uji T, Inomoto Y, et al. InGaAsP/InP 1.3-m wavelength surface-emitting LED's for high-speed short-haul optical communication systems [J]. IEEE Transactions on Electron Device, 1985, 32(12):2609-2614.