浏览全部资源
扫码关注微信
1. 大连海事大学 物理系, 辽宁 大连 116026
2. 大连工业大学 纺织与材料工程学院,辽宁 大连,116034
收稿日期:2013-05-04,
修回日期:2013-06-24,
纸质出版日期:2013-10-10
移动端阅览
韩晓哲, 付方方, 陈宝玖, 马铁成, 林海. 稀土铝磷酸盐玻璃中镨离子的可见光致发光[J]. 发光学报, 2013,34(10): 1306-1312
HAN Xiao-zhe, FU Fang-fang, Chen Bao-jiu, MA Tie-cheng, LIN Hai. Visible Photoluminescence of Praseodymium Ions in Rare-earth Aluminum Phosphate Glass[J]. Chinese Journal of Luminescence, 2013,34(10): 1306-1312
韩晓哲, 付方方, 陈宝玖, 马铁成, 林海. 稀土铝磷酸盐玻璃中镨离子的可见光致发光[J]. 发光学报, 2013,34(10): 1306-1312 DOI: 10.3788/fgxb20133410.1306.
HAN Xiao-zhe, FU Fang-fang, Chen Bao-jiu, MA Tie-cheng, LIN Hai. Visible Photoluminescence of Praseodymium Ions in Rare-earth Aluminum Phosphate Glass[J]. Chinese Journal of Luminescence, 2013,34(10): 1306-1312 DOI: 10.3788/fgxb20133410.1306.
研究了稀土铝磷酸盐5.8Li
2
O-3CaO-5BaO-6Al
2
O
3
-4.2La
2
O
3
-66P
2
O
5
(LCBALP)玻璃中镨离子的可见光致发光特性
采用积分球测试系统对其绝对荧光光谱进行表征。
1
D
2
3
H
4
的自发辐射跃迁几率和最大受激发射截面分别为926.5 s
-1
和3.510
-21
cm
2
。在蓝色LED激发下
镨离子可见特征发射峰的辐射通量和光通量分别为112.6 W和29.7 mlm
其可见特征发射的总荧光量子产率为4.1%。光学玻璃中镨离子的光谱评估为其在光电子器件和紧凑型照明光源领域的发展提供了重要的参考依据。
Visible photoluminescence properties of praseodymium ions in rare-earth aluminum phosphate 5.8Li
2
O-3CaO-5BaO-16Al
2
O
3
-4.2La
2
O
3
-66P
2
O
5
(LCBALP) glass were investigated and the absolute fluorescence spectra were measured and calibrated in an integrating sphere. The spontaneous emission probability and the maximum stimulated emission cross-section corresponding to the
1
D
2
3
H
4
transition are 926.5 s
-1
and 3.510
-21
cm
2
respectively. Under the blue LED excitation
the radiant flux and the luminous flux for the visible emission bands of LCBALP glass are identified to be 112.6 W and 29.7 mlm
respectively. The total quantum yield for the visible fluorescence is determined to be 4.1%. The spectral evaluations of praseodymium ions in optical glass provide a reliable reference in developing optoelectronic devices and compact lighting sources.
Cao C Y, Qin W P, Zhang J S, et al. Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4 [J]. Opt. Commun., 2010, 283(4):547-550.[2] Qu Y Q, Kong X G, Sun Y J, et al. Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals [J]. J. Alloys Compd., 2009, 485(1-2):493-496.[3] Zhao S L, Xin F X, Xu S Q, et al. Luminescence properties and energy transfer of Eu/Tb ions codoped aluminoborosilicate glasses [J]. J. Non-Cryst. Solids, 2011, 357(11-13):2424-2427.[4] Zhou Y H, Lu S C. Luminescent properties of Er3+ and Er3+/Yb3+ doped nanocrystalline CaWO4 [J]. Chin. J. Lumin.(发光学报), 2010, 31(3):378-384 (in Chinese).[5] Ren L J, Du X Q, Lei X H, et al. Effect of Dy3+ content on luminescent properties of Eu2+, Dy3+ co-doped high silica luminescence glass [J]. Chin. J. Lumin.(发光学报), 2012, 33(11):1161-1165 (in Chinese).[6] Hu L Y, Song H W, Pan G H, et al. Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders [J]. J. Lumin., 2007, 127(2):371-376.[7] Zhang J H, Wang L, Jin Y, et al. Energy transfer in Y3Al5O12:Ce3+,Pr3+ and CaMoO4:Sm3+,Eu3+ phosphors [J]. J. Lumin., 2011, 131(3):429-432.[8] You F T, Bos Adrie J J, Shi Q F, et al. Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) accepter (Eu3+, Yb3+) pairs in Y3Al5O12 [J]. Phys. Rev. B, 2012, 85(11):115101-1-7.[9] Liu X, Chen B J, Pun E Y B, et al. Ultra-broadband near-infrared emission in praseodymium ion doped germanium tellurite glasses for optical fiber amplifier operating at E-, S-, C-, and L-band [J]. J. Appl. Phys., 2012, 111(11):116101-1-3.[10] Zhang J S, Liu F, Chen B J, et al. Parameterizing intensity of 4f24f2 electric-dipole transition in Pr3+ doped LiYF4 [J]. Phys. Lett. A, 2011, 375(3):743-746.[11] Zhang J S, Zhang L G, Ren J Y, et al. Upconversion emission properties in Yb3+-Er3+ co-doped Y2O3, Y2O2S and NaYS2 powder materials [J]. Chin. J. Lumin.(发光学报), 2013, 34(5):542-546 (in Chinese).[12] Zhao D X, Liu Y C, Shen D Z, et al. The dependence of emission spectra of rare earth ion on the band-gap energy of MgxZn1-xO alloy [J]. J. Cryst. Growth, 2003, 249(1-2):163-166.[13] Wang J, Zhou Y X, Dai S X, et al. State-selective energy transfer from Er3+ to Eu3+ in Bi2O3-GeO2-Ga2O3-Na2O glasses [J]. Spectrochim. Acta A, 2009, 72(1):41-45.[14] Sun J M, Zhong G Z, Fan X W, et al. Electroluminescence from ITO/SiO2/Ta2O5/Al multiple-layer structure excited by hot electrons [J]. J. Non-Cryst. Solids, 1997, 212(2-3):192-197.[15] L W, Hao Z D, Zhang X, et al. Ca3Al2(SiO4)3-Cl4:Eu2+,Mn2+: A potential phosphor with energy transfer for near-UV pumped white-LEDs [J]. Opt. Mater., 2011, 33(8):1262-1265.[16] Zhang C Y, Liu X Y, Qin L, et al. White microcavity organic light-emitting diode based on one emitting material [J]. J. Lumin., 2007, 122-123:590-592.[17] Zhang L L, Peng M Y, Dong G P, et al. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser [J]. Opt. Mater., 2012, 34(7):1202-1207.[18] Ming C G, Song F, Yu Y, et al. Optical character of Er3+/Yb3+ co-doped P2O5-CaO-Na2O-Al2O3-AgO phosphate glass [J]. Opt. Commun., 2011, 284(7):1868-1871.[19] Guo W, Fu F F, Yang J, et al. Radiant and luminous fluxes of Sm3+ doped heavy metal silicate glass under the excitation of violet light emitting diode [J]. Chin. J. Lumin.(发光学报), 2013, 34(1):49-53 (in English).[20] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127:750-761.[21] Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37:511-520.[22] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ [J]. J. Chem. Phys., 1968, 49:4424-4442.[23] Sheng Q C, Wang X L, Chen D P. Near-infrared emission from Pr-doped borophosphate glass for broadband telecommunication [J]. J. Lumin., 2013, 135:38-41.[24] Rao C S, Kityk I V, Srikumar T, et al., Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides [J]. J. Alloys Compd., 2011, 509:9230-9239.[25] Li M, Bai G X, Guo Y Y, et al. Investigation on Tm3+-doped silicate glass for 1.8 m emission [J]. J. Lumin., 2012, 132(7):1830-1835.
0
浏览量
187
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构