浏览全部资源
扫码关注微信
内蒙古师范大学 物理与电子信息学院, 内蒙古 呼和浩特 010022
收稿日期:2013-05-22,
修回日期:2013-07-30,
纸质出版日期:2013-10-10
移动端阅览
张国庆, 赵凤岐, 张晨宏. 纤锌矿Mg<sub><em>x</em></sub>Zn<sub>1-<em>x</em></sub>O/Mg<sub>0.3</sub>Zn<sub>0.7</sub>O抛物量子阱中极化子能级[J]. 发光学报, 2013,34(10): 1300-1305
ZHANG Guo-qing, ZHAO Feng-qi, ZHANG Chen-hong. Polaron Energy Level in Wurtzite Mg<sub><em>x</em></sub>Zn<sub>1-<em>x</em></sub>O/Mg<sub>0.3</sub>Zn<sub>0.7</sub>O Parabolic Quantum Well[J]. Chinese Journal of Luminescence, 2013,34(10): 1300-1305
张国庆, 赵凤岐, 张晨宏. 纤锌矿Mg<sub><em>x</em></sub>Zn<sub>1-<em>x</em></sub>O/Mg<sub>0.3</sub>Zn<sub>0.7</sub>O抛物量子阱中极化子能级[J]. 发光学报, 2013,34(10): 1300-1305 DOI: 10.3788/fgxb20133410.1300.
ZHANG Guo-qing, ZHAO Feng-qi, ZHANG Chen-hong. Polaron Energy Level in Wurtzite Mg<sub><em>x</em></sub>Zn<sub>1-<em>x</em></sub>O/Mg<sub>0.3</sub>Zn<sub>0.7</sub>O Parabolic Quantum Well[J]. Chinese Journal of Luminescence, 2013,34(10): 1300-1305 DOI: 10.3788/fgxb20133410.1300.
采用改进的Lee-Low-Pines(LLP)中间耦合方法研究纤锌矿Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O抛物量子阱材料中的极化子能级
给出极化子基态能量、跃迁能量(第一激发态到基态)和不同支长波光学声子对电子态能级的贡献随量子阱宽度
d
的变化规律。理论计算中考虑了纤锌矿Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O抛物量子阱材料中声子模的各向异性和介电常数、声子(类LO和类TO)频率等随空间坐标
Z
变化(SD)效应对极化子能量的影响。结果表明
Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O抛物量子阱中电子与长波光学声子相互作用对极化子能级的移动很大
使得极化子能量明显降低。阱宽较小时
半空间长波光学声子对极化子能量的贡献较大
而定域长波光学声子的贡献较小;阱宽较大时
情况则正好相反。在
d
的变化范围内
电子与长波光学声子相互作用对极化子能级的移动(约67~79 meV)比Al
x
Ga
1-
x
As/Al
0.3
Ga
0.7
As抛物量子阱中的相应值(约1.8~3.2 meV)大得多。因此
讨论ZnO基量子阱中电子态问题时要考虑电子与长波光学声子的相互作用。
The energy levels of polaron in a wurtzite Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O parabolic quantum well are investigated by adopting a modified Lee-Low-Pines variational method. The ground state energy
the transition energy and the contributions of different branches of optical phonon modes to the ground state energy as functions of the well width
d
are given. The effects of the anisotropy of optical phonon modes(like-LO and like-TO)and the spatial dependence effective mass
dielectric constant
phonon frequency on energy levels are considered in theoretical calculation. The results indicate that the contributions of the electron-optical phonon interaction to polaron energy shift in Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O parabolic quantum well are very large
which make the energy of polaron reduce. For a narrower quantum well
the contributions of half-space optical phonon modes is large
and the contributions of the confined optical phonon modes is small
while for a wider one
the case is contrary. In the region of
d
the contributions of the electron-optical phonon interaction to polaron energy shift in wurtzite Mg
x
Zn
1-
x
O/Mg
0.3
Zn
0.7
O (about from 67 to 79 meV) are greater than that of Al
x
Ga
1-
x
As/Al
0.3
Ga
0.7
N parabolic quantum well (about from 1.8 to 3.2 meV). Therefore
the electron-optical phonon interaction should be considered in studying electron state in ZnO based quantum well.
Su S C, Lu Y M, Mei T. Fabrication and optical properties of ZnO/ZnMgO multiple quantumwells on m-sapphire substrates [J]. Acta Phys. Sinica (物理学报), 2011, 60(9):096801-1-4 (in Chinese).[2] Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300(5623):1269-1272.[3] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4):041301-403.[4] Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Appl. Phys. Lett., 1998, 73(8):1038-1041.[5] Liu H X, Zhou S M, Li S Z, et al. Growth of ZnO microrod array films and their optical properties [J]. Acta Phys. Sinica (物理学报), 2006, 55(3):1398-1401 (in Chinese).[6] Lee B C, Kim K V, Stroscio M A. Electron-optical-phonon scattering in wurtzite crystals [J]. Phys. Rev. B, 1997,56(3):997-1000.[7] Zhang B P, Binh N T, Wakatsuki K, et al. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect [J]. Appl. Phys. Lett., 2007, 86(3):032105-1-3.[8] Park S H. Exciton binding energies in wurtzite ZnO/MgZnO quantum well with spontaneous and piezoelectric polarizations [J]. J. Korean Phys. Soc., 2007, 51(4):1404-1408.[9] Makino T, Chia C H, Tuan T, et al. Room-temperature luminescence of excitons in ZnO/(Mg,Zn)O multiple quantum wells on lattice-matched substrates [J]. Appl. Phys. Lett., 2000, 77(7):975-977.[10] Gruber T, Kirchner C, Kling R, et al. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region [J]. Appl. Phys. Lett., 2004, 84(26):5359-5361.[11] Makino T, Tuan N T, Sun H D, et al. Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn)O multiple quantum wells [J]. Appl. Phys. Lett., 2001, 78(14):1979-1981.[12] Bretagnon T, Lefebvre P, Guillet T, et al. Barrier composition dependence of the internal electric field in ZnO/Zn1-xMgxO quantum wells [J]. Appl. Phys. Lett., 2007, 90(20):201912-1-3.[13] Furno E, Chiaria S, Penna M, et al. Electronic and optical properties of MgxZn1-xO and BexZn1-xO quantum wells [J]. J. Elect. Mater., 2010, 39(3):936-944.[14] Ohtomo A, Tamura K, Kawasaki M, et al. Room-temperature stimulated emission of excitons in ZnO/(Mg,Zn)O superlattices [J]. Appl. Phys. Lett., 2000, 77(14):2204-2206.[15] Xia Y, Brault J, Nemoz M, et al. Optical properties of a-plane(Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy [J]. Appl. Phys. Lett., 2011, 99(15):261910-261912.[16] Stlzel M, Kupper J, Brandt M, et al. Electronic and optical properties of ZnO/(Mg, Zn)O quantum wells with and without a distinct quantum-confined Stark effect [J]. J. Appl. Phys., 2012, 111(6):063701-1-10.[17] Fan W J, Xia J B, Agus P A, et al. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells [J]. J. Appl. Phys., 2006, 99(1):013702-1-4.[18] Coli G, Bajaj K K. Excitonic transitions in ZnO/MgZnO quantum well heterostructures [J]. Appl. Phys. Lett., 2001, 78(18):2861-2863.[19] Lange M, Kupper J, Dietrich C P, et al. Exciton localization and phonon sidebands in polar ZnO/MgZnO quantum wells [J]. Phys. Rev. B, 2012, 86(4):045318-1-8.[20] Morhain C, Bretagnon T, Lefebvre P, et al. Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells [J]. Phys. Rev. B, 2005, 72(24):241305-1-4.[21] Weston L, Cui X Y, Delley B, et al. Band offsets and polarization effects in wurtzite ZnO/Mg0.25Zn0.75O superlattices from first principles [J]. Phys. Rev. B, 2012, 86(20):205322-1-10.[22] Lee B C, Kim K W, Stroscio M A, et al. Optical-phonon confinement and scattering in wurtzite heterostructures [J]. Phys. Rev. B, 1998, 58(8):4860-4865.[23] Komirenko S M, Kim K W, Stroscio M A, et al. Energy-dependent electron scattering via interaction with optical phonons in wurtzite crystals and quantum wells [J]. Phys. Rev. B, 2000, 61(3):2034-2040.[24] Shi J J. Electron-interface-phonon interaction in wurtzite multilayer heterostructures [J]. Solid State Commun., 2003, 127(1):51-55.[25] Shi J J, Chu X L, Goldys E M. Propagating optical-phonon modes and their electron-phonon interactions in wurtzite GaN/AlxGa1-xN quantum wells [J]. Phys. Rev. B, 2004, 70(11):115318-1-8.[26] Qi X H, Kong X Y, Lin J Y. Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well [J]. Phys. Rev. B, 1998, 58(16):10578-10582.[27] Zhao F Q, Zhang M. Polaronic effect on the electron energy spectrum in a wurtzite InxGa1-xN/GaN quantum well [J]. J. Phys. Soc. Jpn., 2011, 80(9):94713-1-5.[28] Ashkenov N, Mbenkum B N, Bundesmann C. Infrared dielectric functions and phonon modes of high-quality ZnO films [J]. J. Appl. Phys., 2003, 93(1):126-133.[29] Lucovsky G, Brodsky M H, Burstein E. Extension of a linear diatomic-chain model for the calculation of local-mode frequencies in real crystals [J]. Phys. Rev. B, 1970, 2(8):3295-3302.[30] Zhao F Q, Liang X X. Polarons with spatially dependent mass in a finite parabolic quantum well [J]. Chin. Phys. Lett., 2002, 19(7):974-977.
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构