浏览全部资源
扫码关注微信
长春理工大学化学与环境工程学院 应用化学与纳米技术吉林省高校重点实验室, 吉林 长春 130022
收稿日期:2013-05-09,
修回日期:2013-08-01,
纸质出版日期:2013-10-10
移动端阅览
韩丽, 宋超, 刘桂霞, 王进贤, 董相廷. Ca<sub>0.8</sub>La<sub>0.2-<em>x-y</em></sub>MoO<sub>4</sub>:<em>x</em>Tb<sup>3+</sup>, <em>y</em>Eu<sup>3+</sup>荧光材料的水热合成及多色发光性质[J]. 发光学报, 2013,34(10): 1288-1294
HAN Li, SONG Chao, LIU Gui-xia, WANG Jin-xian, DONG Xiang-ting. Hydrothermal Preparation and Multi-color Luminescence Properties of Ca<sub>0.8</sub>La<sub>0.2-<em>x-y</em></sub>MoO<sub>4</sub>:<em>x</em>Tb<sup>3+</sup>, <em>y</em>Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2013,34(10): 1288-1294
韩丽, 宋超, 刘桂霞, 王进贤, 董相廷. Ca<sub>0.8</sub>La<sub>0.2-<em>x-y</em></sub>MoO<sub>4</sub>:<em>x</em>Tb<sup>3+</sup>, <em>y</em>Eu<sup>3+</sup>荧光材料的水热合成及多色发光性质[J]. 发光学报, 2013,34(10): 1288-1294 DOI: 10.3788/fgxb20133410.1288.
HAN Li, SONG Chao, LIU Gui-xia, WANG Jin-xian, DONG Xiang-ting. Hydrothermal Preparation and Multi-color Luminescence Properties of Ca<sub>0.8</sub>La<sub>0.2-<em>x-y</em></sub>MoO<sub>4</sub>:<em>x</em>Tb<sup>3+</sup>, <em>y</em>Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2013,34(10): 1288-1294 DOI: 10.3788/fgxb20133410.1288.
采用水热法制备了Ca
0.8
La
0.2-
x-y
MoO
4
:
x
Tb
3+
y
Eu
3+
荧光材料
并对其结构和发光性能进行了研究。X射线衍射(XRD) 分析表明
合成的样品为四方晶系的CaMoO
4
白钨矿结构
稀土离子La
3+
、Eu
3+
、Tb
3+
的引入不会改变主晶格的结构。荧光光谱表明
与CaMoO
4
:Eu
3+
荧光粉相比
基质中掺杂La 后的Ca
0.8
La
0.15
MoO
4
:0.05Eu
3+
样品的616 nm (
5
D
0
7
F
2
) 处的特征发射峰明显增强。在285 nm紫外光激发下
Ca
0.8
La
0.16-
y
MoO
4
:0.04Tb
3+
y
Eu
3+
(
y
=0.01
0.03
0.05
0.07) 系列样品在545 nm 和616 nm 处出现的发射峰
分别对应于Tb
3+
的
5
D
4
7
F
5
跃迁和Eu
3+
的
5
D
0
7
F
2
跃迁
并且随着Eu
3+
掺杂量的增加
Tb
3+
的发射峰逐渐减弱
Eu
3+
的发射峰逐渐增强
表明该荧光材料中存在着由Tb
3+
到Eu
3+
能量传递。随着Ca
0.8
La
0.16-
y
MoO
4
:0.04Tb
3+
y
Eu
3+
(
y
=0.01
0.03
0.05
0.07) 系列样品中激活剂Eu
3+
掺杂量的增加
荧光粉实现了从绿色黄绿黄色红色的颜色可调。
Ca
0.8
La
0.2-
x-y
MoO
4
:
x
Tb
3+
y
Eu
3+
fluorescent materials were prepared by hydrothermal method. The crystal structure and luminescence properties were studied. X-ray diffraction (XRD) patterns confirm that the crystal structure of the samples matches well with the tetragonal CaMoO
4
. The introduction of rare earth ions La
3+
Eu
3+
and Tb
3+
doesn't change the structure of the host lattice. Comparing with CaMoO
4
:Eu
3+
phosphors
the characteristic emission peak in 616 nm (
5
D
0
7
F
2
) of Ca
0.8
La
0.15
MoO
4
:0.05Eu
3+
is enhanced obviously. The emission spectra of Ca
0.8
La
0.16-
y
MoO
4
:0.04Tb
3+
y
Eu
3+
(
y
=0.01
0.03
0.05
0.07) exhibit two emission peaks at 545 nm and 616 nm under 285 nm UV excitation
corresponding to the transition of
5
D
4
7
F
5
of Tb
3+
and
5
D
0
7
F
2
of Eu
3+
. It is found that the emission intensity of Eu
3+
increases and the emission intensity of Tb
3+
decreases with the increasing of Eu
3+
content
indicating that there is energy transfer of Tb
3+
Eu
3+
. Moreover
the luminescence colors of the Ca
0.8
La
0.16-
y
MoO
4
:0.04Tb
3+
y
Eu
3+
(
y
=0.01
0.03
0.05
0.07) samples can be tuned from green
green-yellow and yellow to red by simply adjusting the relative doping concentrations of the activator ion of Eu
3+
under a single wavelength excitation.
Zhao D, Seo S J, Bae B S. Full-color mesophase silicate thin film phosphors incorporated with rare earth ions and photosensitizers [J]. Adv. Mater., 2007, 19(21):3473-3479.[2] Zhao Y S, Fu H B, Hu F Q, et al. Multicolor emission from ordered assemblies of organic 1D nanomaterials [J]. Adv. Mater., 2007, 19(21):3554-3558.[3] Li G G, Geng D L, Shang M M, et al. Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: Potential single-phase white-light-emitting phosphors [J]. J. Phys. Chem. C, 2011, 115(44):21882-21892.[4] Wang T, Jing Y J, Zhu Y H, et al. Progress of the research on tungstate and molybdate red phosphor for white-LED [J]. China Light & Lighting (中国照明电器), 2008, 2(4):16-20.(in Chinese)[5] Lin X, Qiao X S, Fan X P. Synthesis and luminescence properties of a novel red SrMoO4:Sm3+,R+ phosphor [J]. J. Solid State Sci., 2011, 13(3):579-583.[6] Liu X R. Phosphor for white led solid state lighting [J]. Chin. J. Lumin.(发光学报), 2007, 28(3):291-301 (in Chinese).[7] Chen Y J, Liu T T, Geng X J, et al. Influence for matrix composition of molybdates-tungstates phosphors and annealing process on photoluminescent properties [J]. J. Chin. Soc. Rare Earths (中国稀土学报), 2012, 30(1):56-60 (in Chinese).[8] Khanna A, Dutta P S. Narrrow spectral emission CaMoO4:Eu3+,Dy3+,Tb3+ phosphor crystals for white light emitting diodes [J]. J. Solid State Chem., 2013, 198:93-100.[9] Xu Z H, Li C X, Li G G, et al. Self-assembled 3D Urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: Hydrothermal synthesis and tunable emission colors [J]. J. Phys. Chem. C, 2010, 114(6):2573-2582.[10] Jiang Y Y, Liu G X, Wang J X, et al. Preparation and luminescence properties of NaGd(MoO4)2:Dy3+,Eu3+ white-light phosphors [J]. Chem. J. Chin. Univ.(高等学校化学学报), 2013, 34(4):794-799 (in Chinese).[11] Liao J S, Zhou D, Yang B, et al. Sol-gel preparation and photoluminescence properties of CaLa2(MoO4)4:Eu3+phosphors [J]. J. Lumin., 2013, 134:533-538.[12] Yang Y L, Li X M, Feng W, et al. Co-percipitation synthesis and photoluminescense properties of (Ca1-x-y,Lny)MoO4:xEu3+ (Ln=Y, Gd) red phosphors [J]. J. Alloys Compd., 2010, 505(1):239-242.[13] Zeng Q H, He P, Liang H B, et al. Luminescence of Eu3+-activated tetra-molybdate red phosphors and their application in near-UV InGaN-based LEDs [J]. Mater. Chem. Phys., 2009, 118(1):76-80.[14] Yang Y L, Li X M, Feng W L, et al. Co-precipitation synthesis and photoluminescence of (Ca1-x-yLuy)MoO4:xEu3+ red phosphors [J]. Chin. J. Inorg. Chem.(无机化学学报), 2011, 27(2):276-280 (in Chinese).[15] Cao F B. Sol-gel synthesis of red-emitting phosphor Ca-Sr-Mo-W-O-(Eu3+,La3+) powders and luminescence properties [J]. Ind. Eng. Chem. Res., 2012, 51(9):3569-3574.[16] Cao F B, Li L S. La3+ acting on host to Eu3+ energy transfer in (Ca-Sr-Eu-La)(Mo-W)O4 under NUV excitation [J]. J. Electrochem. Soc., 2011, 158(10):997-1001.[17] Li X, Yang Z P, Guan L, et al. Synthesis and luminescent properties of CaMoO4:Tb3+,R+(Li+, Na+, K+) [J]. J. Alloys Compd., 2008, 478(1-2):684-686.[18] Sheng T Q, Fu Z L, Wang X J. Solvothermal synthesis and luminescence properties of BaCeF5, and BaCeF5:Tb3+,Sm3+ nanocrystals: An approach for white light emission [J]. J. Phys. Chem. C, 2012, 116(36):19597-19603.[19] Huang C H, Chen T M. A novel singel-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes [J]. J. Phys. Chem. C, 2011, 115(5):2349-2355.[20] Wu Y T, Ding D Z, Pan S K, et al. Luminescence characteristics of Lu0.8Sc0.2BO3:RE3+ (RE=Eu, Tb) polycrystalline powders [J]. J. Alloys Compd., 2011, 509(25):7186-7191.[21] Zhang J H, Lyu W, Hao Z D, et al. Color-tunable white-light emitting BaMg2Al6Si9O30:Eu2+,Tb3+ ,Mn2+ phosphors via energy transfer [J]. Chin. Opt.(中国光学), 2012, 5(3):203-208 (in Chinese).[22] Xie Y, Wang T, Wang H B. Luminescence properties of Y(VP)O4:Eu3+ phosphor doped with alkali earths and rare earths [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(5):587-591 (in Chinese).
0
浏览量
37
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构