浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院大学, 北京 100049
收稿日期:2013-05-16,
修回日期:2013-08-03,
纸质出版日期:2013-10-10
移动端阅览
赵承周, 孔祥贵, 宋曙光, 曾庆辉. NaYF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup>纳米粒子的上转换发光的温度特性[J]. 发光学报, 2013,34(10): 1283-1287
ZHAO Cheng-zhou, KONG Xiang-gui, SONG Shu-guang, ZENG Qing-hui. Temperature Dependence of Upconversion Luminescence in NaYF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(10): 1283-1287
赵承周, 孔祥贵, 宋曙光, 曾庆辉. NaYF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup>纳米粒子的上转换发光的温度特性[J]. 发光学报, 2013,34(10): 1283-1287 DOI: 10.3788/fgxb20133410.1283.
ZHAO Cheng-zhou, KONG Xiang-gui, SONG Shu-guang, ZENG Qing-hui. Temperature Dependence of Upconversion Luminescence in NaYF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(10): 1283-1287 DOI: 10.3788/fgxb20133410.1283.
利用高温热溶剂法合成了NaYF
4
:20%Yb
3+
2%Er
3+
纳米粒子
通过X射线衍射谱、扫描电镜及低温荧光光谱对其结构、形貌及发光性质进行了表征。研究结果表明:合成的纳米粒子为六角相
粒径大小约30 nm。变温光谱研究表明:由于
4
S
3/2
和
2
H
11/2
能级差较小
当温度增加至45 K时
4
S
3/2
能级和
2
H
11/2
能级的电子布局同时相应地增加;而当温度超过45 K之后
温度依赖的
2
H
11/2
能级布局随着温度的提高而增多
表现为520 nm的发光随着温度的提高一直增强。由于无辐射弛豫速率随温度升高而快速增加
导致545 nm的发光随着温度的提高先增强后减弱。
Uniform NaYF
4
:20%Yb
3+
2%Er
3+
nanoparticles were synthesized
via
solvothermal method following high temperature. The X-ray diffraction (XRD) shows that the samples are -NaYF
4
nanocrystals
and SEM images show that the nanoparticles have an average of 30 nm. The intensity of 520 nm emissions gradually increase with temperature rising from 13 K to 300 K
while the intensity of 545 nm emissions first increase and then decrease under 980 nm laser excitation. The reason for this phenomenon is that the electronic distribution of
2
H
11/2
is dependent on the temperature
while the emissions of
4
S
3/2
energy level is governed by a competition process between the thermal agitation and non-radiation decay.
Ji T H, Yang F, Du H Y, et al. Preparation and characterization of upconversion nanocomposite for -NaYF4:Yb3+, Er3+-supported TiO2 nanobelts [J]. J. Rare Earths, 2010, 28(4):529-533.[2] Ehlert O, Thomann R, Darbandi M, et al. A four-color colloidal multiplexing nanoparticle system [J]. ACS Nano, 2008, 2(1):120-124.[3] Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem. Soc., 2006, 128(3):7444-7445.[4] Chen G Y, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. ACS Nano, 2010, 4(6):3163-3168.[5] Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+,Er3+-codoped oxyfluoride glass ceramics [J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese).[6] Pollnau M, Gamelin D R, Lthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61(5):3337-3346.[7] Suyver J F, Aebischer A, Garca-Revilla S, et al. Anomalous power dependence of sensitized upconversion luminescence [J]. Phys. Rev. B, 2005, 71(12):125123-1-9.[8] Wang X, Kong X G, Yu Y, et al. Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity [J]. J. Phys. Chem. C, 2007, 111(41):15119-15124.[9] Lei Y Q, Song H W, Yang L M, et al. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires [J]. J. Chem. Phys., 2005, 123(17):174710-1-5.[10] Wang Y, Tu L P, Zhao J W, et al. Upconversion luminescence of -NaYF4:Yb3+,Er3+ @ -NaYF4 core/shell nanoparticles: Excitation power density and surface dependence [J]. J. Phys. Chem. C, 2009, 113(17):7164-7169.[11] Pires A M, Serra O A, Heer S, et al. Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor [J]. J. Appl. Phys., 2005, 98(6):063529-1-5.[12] Suyver J F, Grimm J, Kramer K W, et al. Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+ [J]. J. Lumin., 2005, 114(1):53-59.[13] Silver J, Martinez-Rubio M I, Ireland T G, et al. Yttrium oxide upconverting phosphors. Part 2: Temperature dependent upconversion luminescence properties of erbium in yttrium oxide [J]. J. Phys. Chem. B, 2001, 105(30):7200-7204.[14] Zheng L J, Gao X Y, Xu W, et al. Temperature characteristic of blue up-conversion emission in Tm3+, Yb3+ codoped oxyfluride glass ceramic [J]. Chin. J. Lumin.(发光学报), 2012, 33(9):944-948 (in Chinese).
0
浏览量
96
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构