浏览全部资源
扫码关注微信
福州大学物理与信息工程学院 微纳器件与太阳能电池研究所, 福建 福州 350108
收稿日期:2013-06-09,
修回日期:2013-07-10,
纸质出版日期:2013-10-10
移动端阅览
赖文彬, 周海芳, 程树英, 赖云锋. Er<sup>3+</sup>/Yb<sup>3+</sup>共掺KLaF<sub>4</sub>纳米晶的制备和上转换发光[J]. 发光学报, 2013,34(10): 1259-1263
LAI Wen-bin, ZHOU Hai-fang, CHENG Shu-ying, LAI Yun-feng. Preparation and Upconversion Luminescence of Er<sup>3+</sup>/Yb<sup>3+</sup> Codoped KLaF<sub>4</sub> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(10): 1259-1263
赖文彬, 周海芳, 程树英, 赖云锋. Er<sup>3+</sup>/Yb<sup>3+</sup>共掺KLaF<sub>4</sub>纳米晶的制备和上转换发光[J]. 发光学报, 2013,34(10): 1259-1263 DOI: 10.3788/fgxb20133410.1259.
LAI Wen-bin, ZHOU Hai-fang, CHENG Shu-ying, LAI Yun-feng. Preparation and Upconversion Luminescence of Er<sup>3+</sup>/Yb<sup>3+</sup> Codoped KLaF<sub>4</sub> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(10): 1259-1263 DOI: 10.3788/fgxb20133410.1259.
用水热法成功制备了Er
3+
/Yb
3+
共掺不同浓度比的KLaF
4
纳米晶
并在300℃氩气气氛下退火。利用X射线衍射谱(XRD)、透射电子显微镜(TEM)对样品的晶体结构和形貌进行了表征。测量了样品漫反射谱、980 nm 激发下的上转换发射光谱和
2
H
11/2
能级的荧光寿命。研究结果表明:制备得到的样品为六方相的纳米棒
退火后纳米棒平均直径为28 nm
长为130 nm;在Er
3+
浓度一定的情况下
提高Yb
3+
掺杂量有利于增强973 nm 附近光的吸收;980 nm 的近红外光可上转换为较强的绿光和红光
且红绿光强度和
2
H
11/2
能级的平均荧光寿命均会随着Yb
3+
掺杂浓度的增加而下降。
KLaF
4
nanocrystals (NCs) co-doped with 2%Er
3+
(fixed) and varied Yb
3+
doping mole fractions (10%
14%
18%) were synthesized by hydrothermal method. The samples were annealed in argon at 300℃ for 1.5 h.The crystal structure and morphology of the samples were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM)
respectively. The optical properties of the samples were evaluated by diffuse reflectance spectra and up-conversion photoluminescence spectroscopy with the average fluorescent lifetimes of
2
H
11/2
level under laser excitation at 980 nm. The results show hexagonal KLaF
4
: Er
3+
Yb
3+
NCs are successfully obtained
which have a longitude of about 130 nm and a diameter of 28 nm for the annealed sample. The diffuse reflection spectra indicate that the absorbtion at around 973 nm is enhanced with the increase of Yb
3+
mole fraction while Er
3+
mole fraction is fixed. The near-infrared light at 980 nm can be up-converted to green and red light. Furthermore
both the intensities of the red and green light and the average fluorescence lifetimes for
2
H
11/2
level were decreased with the increase of Yb
3+
ion concentration in KLaF
4
: Er
3+
Yb
3+
NCs. In addition
the effect of Yb
3+
doping concertration on the intensity of up-conversion luminescence and the average fluorescence lifetimes for
2
H
11/2
level were briefly clarified.
Shen J, Sun L D, Yan C H. Luminescent rare earth nanomaterials for bioprobe applications [J]. Dalton Trans., 2008(42):5687-5697.[2] Xie G X, Lin J M, Wu J H, et al. Application of upconversion luminescence in dye-sensitized solar cells [J]. Chin. Sci. Bull.(科学通报), 2011, 56(1):96-101 (in English).[3] Scheps R. Upconversion laser processes [J]. Prog. Quant. Electr., 1996, 20(4):271-358.[4] Kim K J, Jouini A, Yoshikawa A, et al. Growth and optical properties of Pr,Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence [J]. J. Cryst. Growth, 2007, 299(1):171-177.[5] Passuello T, Piccinelli F, Pedroni M, et al. White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6 [J]. Opt. Mater., 2011, 33(4):643-646.[6] Tsuboi T, Murayama H. Energy-transfer upconversion of rare earth ions in ionic crystals: Case of Tm3+/Ho3+-codoped LiYF4 crystals [J]. J. Alloys Compd., 2006, 408:680-686.[7] Schfer H, Ptacek P, Kmpe K, et al. Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission [J]. Chem. Mater., 2007, 19:1396-1400.[8] Groen C P, Oskam A. Theoretical study of mixed MLaX4(M=Na, K, Cs; X=F, Cl, Br, I) rare earth/alkali metal halide complexes [J]. Inorg. Chem., 2003, 42(3):851-858.[9] Tyagi N, Reddy A A, Nagarajan R. KLaF4:Er an efficient upconversion phosphor [J]. Opt.Mater., 2010, 33(1):42-47.[10] Ahmad S, Prakash G V, Nagarajan R. Hexagonally ordered KLaF4 host: Phase-controlled synthesis and luminescence studies [J]. Inorg. Chem., 2012, 51(23):12748-12754.[11] Liu R, Tu D, Liu Y, et al. Controlled synthesis and optical spectroscopy of anthanide-doped KLaF4 nanocrystals [J]. Nanoscale, 2012, 4(15):4485-4491.[12] Singh N S, Ningthoujam R S, Luwang M N, et al. Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+=Dy3+, Eu3+)nanoparticles: Concentration and annealing effects [J]. Chem. Phys. Lett., 2009, 480(4):237-242.[13] Jia R K, Yang S, Li C X, et al. Liquid preparation of soluble NaYF4:Er3+,Yb3+ nanocrystals [J]. Acta Chim. Sinica (化学学报), 2008, 66(21):2439-2444 (in Chinese).[14] Luo Z D, Huang Y D. Physical Spectroscopy of Solid-State Laser Material [M]. Fuzhou: Fujian Science and Technology Publishing House, 2003:152-155 (in Chinese).
0
浏览量
84
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构