浏览全部资源
扫码关注微信
南京航空航天大学 应用物理系,江苏 南京,211100
收稿日期:2013-06-06,
修回日期:2013-07-09,
纸质出版日期:2013-09-10
移动端阅览
刘晚果, 潘风明. 超导-介质型Fibonacci光子晶体的透射谱与滤波特性分析[J]. 发光学报, 2013,34(9): 1250-1257
LIU Wan-guo, PAN Feng-ming. Transmission Spectra and Filter Property Analysis of Superconductor-medium Fibonacci Photonic Crystal[J]. Chinese Journal of Luminescence, 2013,34(9): 1250-1257
刘晚果, 潘风明. 超导-介质型Fibonacci光子晶体的透射谱与滤波特性分析[J]. 发光学报, 2013,34(9): 1250-1257 DOI: 10.3788/fgxb20133409.1250.
LIU Wan-guo, PAN Feng-ming. Transmission Spectra and Filter Property Analysis of Superconductor-medium Fibonacci Photonic Crystal[J]. Chinese Journal of Luminescence, 2013,34(9): 1250-1257 DOI: 10.3788/fgxb20133409.1250.
目前广泛应用的可调谐光滤波器通过调节干涉腔长度来实现波段的调谐。它需要制备高反射悬浮膜
而悬浮膜在驱动电压的影响下其运动会受到限制
且较窄的透射峰与较大的调谐范围二者不可兼得。为此
本文将光子晶体中的其中一种介质以超导材料取而代之。基于超导理论
利用传输矩阵法对一维超导-介质型Fibonacci光子晶体的透射谱进行了计算
讨论了厚度、折射率以及温度对透射谱的影响。结果表明
受光子带隙的影响
超导体的频率禁带中会出现一系列的通带;Fibonacci等级的增加会导致第一透射峰更加尖锐;介质层光学厚度增大、超导层厚度减小、温度升高均能使透射峰向长波方向移动。最后
在透射谱分析的基础上给出了结构为S
11
(S
5
)
n
的滤波特性
兼顾透射峰半高宽与可调谐范围
确定了滤波器的可调谐波段
在无需调整任何几何参数的条件下实现了温控调谐。
The tunable optical filter is widely used to tuned the waveband by adjusting interference cavity length. It needs to prepare high reflective suspended membrane. However
the moving of suspended membrane is restricted under the influence of the driving voltage. The narrow transmission peak and the large tuning range are hard to be satisfied at the same time. Therefore
one of the media in photonic crystal is replaced with superconductor material in this paper. Based on superconducting theory the transmission spectra of one-dimensional superconductor-medium Fibonacci photonic crystal are calculated by applying transfer matrix method. The effect factors on transmission spectra of parameter such as Fibonacci level
refractive index of medium layer
thicknesses of medium and superconductor layer
temperature are discussed. The results show that a serious of passing band appears at the forbidden band of superconductor because of the influence of photonic band gap. The first transmission peak becomes sharper with the increasing of Fibonacci level. The transmission spectra move towards the long wave direction when the optical thickness of medium layer increases
the thickness of superconductor layer decreases and temperature rises. At last
based on analysis of spectra
the filter property of structure expressed as is given. Besides
the tunable band of filter is determined on condition that the half-width and tunable range are both considered
and temperature-controlled tuning is achieved without adjusting any dimension parameters.
John S. Strong localization of photonics in certain disordered lattices [J]. Phys. Rev. Lett., 1987, 58(23):2486-2489.[2] Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20):2059-2061.[3] Zhou P, You H Y, Wang S Y, et al. Effect of the inserted metal layer on the characteristic of light transmission of one-dimensional photonic crystals [J]. Acta Phys. Sinica (物理学报), 2002, 51(10):2776-2780 (in Chinese).[4] Qiu G X, Lin F L, Li Y P. Implementation of complete two-dimensional bandgap in photonic crystals of square Bravais lattice using complex unit cell [J]. Acta Phys. Sinica (物理学报), 2003, 52(3):600-603 (in Chinese).[5] Liu N H, Fu J W. Effects of Kerr nonlinearity on the band-gap structure of one-dimensional photonic crystals [J]. Acta Phys. Sinica (物理学报), 2003, 52(6):1418-1421 (in Chinese).[6] LiuX, ZhouJ, ZhuB Q, et al. Electro-optical tunable filter with symmetric generalized Fibonacci photonic crystal [J]. Acta Photon. Sinica (光子学报), 2011, 40(11):1723-1728 (in English).[7] Rostami A. Generalized Fibonacci quasi photonic crystals and generation of superimposed Bragg gratings for optical communication [J]. Microelect. J., 2006, 37(9):897-903.[8] Mauriz P W, Vasconcelos M S, Albuquerque E L. Optical transmission spectra in symmetrical Fibonacci photonic multilayers [J]. Phys. Lett. A, 2009, 373(4):496-500.[9] Kohmoto M, Sutherland B, Iguchi K. Localization in optics: Quasiperiodic media [J]. Phys. Rev. Lett., 1987, 58(23):2436-2438.[10] Mao H B, Yang C L, Lai Z S. Theoretical study of the tunable optical filter properties based on photonic crystals [J]. Acta Phys. Sinica (物理学报), 2004, 53:2201-2204 (in Chinese).[11] Ooi C H R, Yeung T C A, Kam C H, et al. Photonic band gap in a superconductordielectric superlattice [J]. Phys. Rev. B, 2000, 61(9):5920-5923.[12] Wu C J, Chen M S, Yang T J. Photonic band structure for a superconductor-dielectric superlattice [J]. Physica C, 2005, 432(1):133-139.[13] Aly A H, Ryu S W, Hsu H T, et al. THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice [J]. Mater. Chem. Phys., 2009, 113(1):382-384.[14] Luo Y H, Wang Y S, Wang D D, et al. Optical properties of one-dimensional metallodielectric photonic crystals [J]. Spectrosc. Spect.Anal. (光谱学与光谱分析), 2008, 28(12):256-259 (in Chinese).[15] Cheng C, Xu C, Zhou T, et al. Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors [J]. J. Phys., 2008, 20(27):275203-1-8.[16] Wu C J, Liu C L, Yang T J. Investigation of photonic band structure in a one dimensional superconducting photonic crystal [J]. J. Opt. Soc. Am. B, 2009, 26(11):2089-2094.
0
浏览量
192
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构