浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子国家重点实验室, 吉林 长春 130012
收稿日期:2013-05-30,
修回日期:2013-07-03,
纸质出版日期:2013-09-10
移动端阅览
李嘉琪, 刘彩霞, 郭文滨. 水溶性V<sub>2</sub>O<sub>5</sub>在聚合物太阳能电池中的应用[J]. 发光学报, 2013,34(9): 1245-1249
LI Jia-qi, LIU Cai-xia, GUO Wen-bin. Role of Solution-processed V<sub>2</sub>O<sub>5</sub> in Organic Solar Cell[J]. Chinese Journal of Luminescence, 2013,34(9): 1245-1249
李嘉琪, 刘彩霞, 郭文滨. 水溶性V<sub>2</sub>O<sub>5</sub>在聚合物太阳能电池中的应用[J]. 发光学报, 2013,34(9): 1245-1249 DOI: 10.3788/fgxb20133409.1245.
LI Jia-qi, LIU Cai-xia, GUO Wen-bin. Role of Solution-processed V<sub>2</sub>O<sub>5</sub> in Organic Solar Cell[J]. Chinese Journal of Luminescence, 2013,34(9): 1245-1249 DOI: 10.3788/fgxb20133409.1245.
为了提高聚合物太阳能电池的能量转换效率
选择水溶性V
2
O
5
作为阳极缓冲层制备了结构为ITO/TiO
2
/P3HT:PCBM/V
2
O
5
/Ag的电池器件。V
2
O
5
纳米线采用水热法制成。研究了V
2
O
5
浓度和退火温度对有机太阳能电池器件性能的影响。实验结果表明:V
2
O
5
质量浓度为300 g/mL的器件的效率最高
达到了2.35%
远大于无阳极缓冲层器件的效率0.14%;80 ℃是V
2
O
5
退火的最佳温度。与热沉积方法相比
可溶液处理的V
2
O
5
作为阳极缓冲层具有工艺简单且可大面积制备的优点
电池的效率得到了较大幅度的提高。
In order to improve the power conversion efficiency of the organic solar cell
a solution-processed vanadium pentoxide was used as an anode buffer layer. The solution-processed V
2
O
5
nanowire was synthesised by using hydrothermal method. The device structure was ITO/TiO
2
/P3HT: PCBM/V
2
O
5
/Ag. The influence of V
2
O
5
concentrations and annealing temperature on the device performance was investigated. The experimental results indicate that the power conversion efficiency (PCE of 2.35%) is the highest when the V
2
O
5
mass concentration is 300 g/mL
much higher than that without anode buffer (PCE of only 0.14%). Moreover
80 ℃ is the relative optimum annealing temperature of V
2
O
5
. Compared with thermal evaporation method
the solution-processed approach is relatively simple
attractive for mass production and greatly valuable for applications.
Helgesen M, Sndergaard R, Krebs F C. Advanced materials and processes for polymer solar cell devices [J]. J. Mater. Chem., 2010, 20(1):36-60.[2] Wu B, Liu P Y, Li Y W, et al. Electron transport layers of inverted heterojunction organic solar cells [J].Chin. J. Lumin.(发光学报), 2010, 31(5):753-756 (in Chinese).[3] Krebs F C, Fyenbo J, Jrgensen M. Product, integration of compact roll-to-roll processed polymer solar cell modules:Methods and manufacture using flexographic printing, slot-die coating and rotary screen printing [J]. J. Mater. Chem., 2010, 20(41):8994-9001.[4] Nielsen T D, Cruickshank C, Foged S, et al. Business, mark and intellectual property analysis of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(10):1553-1571.[5] Li X H, Choy W C H, Lu H F, et al. Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles [J]. Adv. Funct. Mater., 2013, 23(21):2728-2735.[6] Kawano K, Pacios R, Poplavskyy D, et al. Degradation of organic solar cells due to air exposure [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(20):3520-3530.[7] Kim Y H, Lee S H, Noh J, et al. Performance and stability of electro-luminescent device with self-assembled layers of poly(3,4-ethylenediox-ythiophene)-poly(styrenesulfonate) and polyelectrolytes [J]. Thin Solid Films, 2006, 510(1-2):305-310.[8] Zhuang T J, Su Z S, Liu Y D, et al. Enhanced performance of small molecular weight organic solar cells by incorporating Ag nanoparticles [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):753-756 (in Chinese).[9] Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells [J]. Appl. Phys. Lett., 2006, 88(25):253503-1-3.[10] Tao C, Ruan S P, Xie G H, et al. Role of tungsten oxide in inverted polymer solar cells [J]. Appl. Phys. Lett., 2009, 94(4):043311-1-3.[11] Irwin M D, Buchholz D B, Hains A W, et al. p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells [J]. Proc. Nat. Acad. Sci., 2008, 105(8):2783-2787.[12] Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Appl. Phys. Lett., 2006, 88(7):073508-1-3.[13] Tao C, Ruan S P, Zhang X D, et al. Performance improvement of inverted polymer solar cells withdifferent top electrodes by introducing a MoO3 buffer layer [J]. Appl. Phys. Lett., 2008, 93(19):193307-1-3.[14] Yu W J, Shen L, Ruan S P, et al. Performance improvement of inverted polymer solar cells thermally evaporating nickel oxide as an anode buffer layer [J]. Sol. Energy Mater. Sol. Cells, 2012, 98(3):212-215.[15] Shen L, Zhang X D, Guo W B, et al. Performance improvement of inverted polymer solar cells using V2O5 as an anode buffer layer [J]. Mater. Sci. Forum, 2011, 663-665:865-868.[16] Meyer J, Khalandovsky R, Grrn P, et al. MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics [J]. Adv. Mater., 2011, 23(1):70-73.[17] Mi S R, Jin J. Enhanced efficiency of organic photovoltaic cells using solution-processed metal oxide as an anode buffer layer [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(11):3015-3020.[18] Zhai T, Liu H, Li H, et al. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties [J]. Adv. Mater., 2010, 22(23):2547-2552.[19] Shen L, Zhu G H, Guo W B, et al. Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer [J]. Appl. Phys. Lett., 2008, 92(7):073307-1-3.[20] Li X, Wen S S, He Q H, et al. Effects of electrodes on the optical performance of CuPc/C60 bilayer heterojunction organic solar cells [J]. Chin. J. Lumin.(发光学报), 2012, 33(8):888-894 (in Chinese).
0
浏览量
88
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构