浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,100049
2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2013-04-18,
修回日期:2013-07-11,
纸质出版日期:2013-09-10
移动端阅览
汪丽杰, 佟存柱, 杨晔, 曾玉刚, 宁永强, 秦莉, 刘云, 王立军. 布拉格反射波导激光器的光谱特性[J]. 发光学报, 2013,34(9): 1227-1232
WANG Li-jie, TONG Cun-zhu, YANG Ye, ZENG Yu-gang, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Optical Spectral Characteristics of Bragg Reflection Waveguide Lasers[J]. Chinese Journal of Luminescence, 2013,34(9): 1227-1232
汪丽杰, 佟存柱, 杨晔, 曾玉刚, 宁永强, 秦莉, 刘云, 王立军. 布拉格反射波导激光器的光谱特性[J]. 发光学报, 2013,34(9): 1227-1232 DOI: 10.3788/fgxb20133409.1227.
WANG Li-jie, TONG Cun-zhu, YANG Ye, ZENG Yu-gang, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Optical Spectral Characteristics of Bragg Reflection Waveguide Lasers[J]. Chinese Journal of Luminescence, 2013,34(9): 1227-1232 DOI: 10.3788/fgxb20133409.1227.
设计并制备了基于双边非1/4波长布拉格反射波导的边发射半导体激光器
中心腔采用低折射率材料
在垂直方向利用布拉格反射进行光限制
实现了超大光斑尺寸且稳定单横模工作。10 m条宽、未镀膜的脊型激光器在准连续和连续工作方式下的总的输出功率分别超过了170 mW和80 mW
且最高功率受热扰动限制。激光器远场图案在垂直方向为双瓣状
单瓣垂直方向和水平方向发散角分别低至7.85 和6.7。激射谱半高全宽仅为0.052 nm
光谱包络存在周期性调制现象
模式间隔约为3.3 nm。电流增加到300 mA以上时
激光器出现模式跳变。
The continuous-wave single-mode operation of edge-emitting diode laser based on dual-sided non-quarter-wave Bragg reflection waveguide (BRW) was demonstrated at room temperature. A low-index core was utilized in the laser. The ridge BRW lasers (BRLs) exhibited an ultra-narrow twin-beam output. Single longitudinal mode emission with a very small spectral linewidth of 0.052 nm was measured. The lasing spectra showed a periodic modulation in the envelope with a mode spacing of approximately 3.3 nm. When the injection current of the BRLs was beyond 300 mA
a large mode hopping of the emission wavelength was observed.
Pietrzak A, Wenzel H, Erbert G, et al. High-power laser diodes emitting light above 1 100 nm with a small vertical divergence angle of 13 [J]. Opt. Lett., 2008, 33(19):2188-2190.[2] Pietrzak A, Wenzel H, Crump P, et al. 1 060-nm ridge waveguide lasers based on extremely wide waveguides for 1.3-W continuous-wave emission into a single mode with FWHM divergence angle of 96 [J]. IEEE J. Quant. Elect., 2012, 48(5):568-575.[3] Malag A, Jasik A, Teodorczyk M, et al. High-power low vertical beam divergence 800-nm-band double-barrier-SCH GaAsP-(AlGa)as laser diodes [J]. IEEE Photon. Technol. Lett., 2006, 18(15):1582-1584.[4] Hung C T, Lu T C. 830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics [J]. IEEE J. Quant. Elect., 2013, 49(1):127-132.[5] Chen Y C, Waters R G, Dalby R J. Single-quantum-well laser with 11.2 degree transverse beam divergence [J]. Electron. Lett., 1990, 26(17):1348-1350.[6] Wenzel H, Bugge F, Erbert G, et al. High-power diode lasers with small vertical beam divergence emitting at 808 nm [J]. Elect. Lett., 2001, 37(16):1024-1026.[7] Malag A, Dabrowska E, Teodorczyk M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes [J]. IEEE J. Quant. Elect., 2012, 48(4):465-471.[8] Liang W, Xu Y, Choi J M, et al. Engineering transverse Bragg resonance waveguides for large modal volume lasers [J]. Opt. Lett., 2003, 28(21):2079-2081.[9] Yariv A, Xu Y, Mookherjea S. Transverse Bragg resonance laser amplifier [J]. Opt. Lett., 2003, 28(3):176-178.[10] Her T H. Gain-guiding in transverse grating waveguides for large modal area laser amplifiers [J]. Opt. Exp., 2008, 16(10):7197-7202.Zhu L, Scherer A, Yariv A. Modal gain analysis of transverse Bragg resonance waveguide lasers with and without transverse defects [J]. IEEE J. Quant. Elect., 2007, 43(10):934-940.[12] Tao M M, Yang P L, Liu W P, et al. Response characteristics of fiber Bragg gratings irradiated by high energy lasers [J]. Chin. Opt. [HTK](中国光学), 2012, (5):544-549 (in Chinese).[13] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285(5433):1537-1539.[14] Bijlani B J, Helmy A S. Bragg reflection waveguide diode lasers [J]. Opt. Lett., 2009, 34(23):3734-3736.[15] Tong C Z, Bijlani B J, Alali S, et al. Characteristics of edge emitting Bragg reflection waveguide lasers [J]. IEEE J. Quant. Elect., 2010, 46(11):1605-1610.[16] Tong C Z, Bijlani B J, Zhao L J, et al. Mode selectivity in bragg reflection waveguide lasers [J]. IEEE Photon. Technol. Lett., 2011, 23(14):1025-1027.[17] Maximov M V, Shernyakov Y M, Novikov I I, et al. High-power low-beam divergence edge-emitting semiconductor lasers with 1- and 2-D photonic bandgap crystal waveguide [J]. IEEE J. Select. Topics Quant. Elect., 2008, 14(4):1113-1122.[18] Kataoka K. Analysis of banding problem in multiple beam scanning system of laser printer [J]. Opt. Rev., 2008, 15(4):196-203.[19] Heidmann A, Horowicz R J, Reynaud S, et al. Observation of quantum noise reduction on twin laser beams [J]. Phys. Rev. Lett., 1987, 59(22):2555-2557.[20] Jechow A, Lichtner M, Menzel R, et al. Stripe-array diode-laser in an off-axis external cavity: Theory and experiment [J]. Opt. Exp., 2009, 17(22):19599-19604.[21] Ouyang D, Heitz R, Ledentsov N N, et al. Lateral-cavity spectral hole burning in quantum-dot lasers [J]. Appl. Phys. Lett., 2002, 81(9):1546-1548.[22] Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography [J]. Semicond. Sci. Technol., 2005, 20(11):1149-1152.[23] Feise D, John W, Bugge F, et al. 96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface grating [J]. Opt. Lett., 2012, 37(9):1532-1534.
0
浏览量
215
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构