浏览全部资源
扫码关注微信
北京交通大学 理学院 北京,100044
收稿日期:2013-05-11,
修回日期:2013-06-24,
纸质出版日期:2013-09-10
移动端阅览
刘宗华, 郑义. LD泵浦被动调<em>Q</em>-Yb<sup>3+</sup>:YAG微晶片激光器的优化设计[J]. 发光学报, 2013,34(9): 1219-1226
LIU Zong-hua, ZHENG Yi. Design and Optimization of LD-pumped Passively <em>Q</em>-switched Yb<sup>3+</sup>:YAG Microchip Laser[J]. Chinese Journal of Luminescence, 2013,34(9): 1219-1226
刘宗华, 郑义. LD泵浦被动调<em>Q</em>-Yb<sup>3+</sup>:YAG微晶片激光器的优化设计[J]. 发光学报, 2013,34(9): 1219-1226 DOI: 10.3788/fgxb20133409.1219.
LIU Zong-hua, ZHENG Yi. Design and Optimization of LD-pumped Passively <em>Q</em>-switched Yb<sup>3+</sup>:YAG Microchip Laser[J]. Chinese Journal of Luminescence, 2013,34(9): 1219-1226 DOI: 10.3788/fgxb20133409.1219.
从速率方程出发
理论分析了泵浦功率、输出镜反射率、Cr
4+
:YAG的初始透过率和长度、Yb
3+
:YAG的长度对调
Q
激光器的重复频率、脉冲宽度、平均输出功率、峰值功率、输出脉冲能量和单脉冲能量利用率的影响。依据理论结果设计了一个窄脉冲宽度、高峰值功率和脉冲能量的被动调
Q
-Yb
3+
:YAG微晶片激光器。该激光器的脉冲宽度
t
=199 ps
峰值功率
P
m
=1.04 MW
输出脉冲能量
E
=0.21 mJ。
Based on rate equations
effects of laser parameters
including the pumped power
the reflectance of output mirror
the initial transmittance and the length of Cr
4+
: YAG
and the length of Yb
3+
:YAG on the laser performance were analyzed theoretically. Then based on theoretical conclusions
we designed a LD-pumped and passively
Q
-switched Yb
3+
:YAG microchip laser with narrow pulse width
high peak power and large pulse energy. The pulse width was 199 ps
the peak power was 1.04 MW
and the pulse energy was 0.21 mJ.
Pietrzak A, Wenzel H, Erbert G, et al. High-power laser diodes emitting light above 1 100 nm with a small vertical divergence angle of 13 [J]. Opt. Lett., 2008, 33(19):2188-2190.[2] Pietrzak A, Wenzel H, Crump P, et al. 1 060-nm ridge waveguide lasers based on extremely wide waveguides for 1.3-W continuous-wave emission into a single mode with FWHM divergence angle of 96 [J]. IEEE J. Quant. Elect., 2012, 48(5):568-575.[3] Malag A, Jasik A, Teodorczyk M, et al. High-power low vertical beam divergence 800-nm-band double-barrier-SCH GaAsP-(AlGa)as laser diodes [J]. IEEE Photon. Technol. Lett., 2006, 18(15):1582-1584.[4] Hung C T, Lu T C. 830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics [J]. IEEE J. Quant. Elect., 2013, 49(1):127-132.[5] Chen Y C, Waters R G, Dalby R J. Single-quantum-well laser with 11.2 degree transverse beam divergence [J]. Electron. Lett., 1990, 26(17):1348-1350.[6] Wenzel H, Bugge F, Erbert G, et al. High-power diode lasers with small vertical beam divergence emitting at 808 nm [J]. Elect. Lett., 2001, 37(16):1024-1026.[7] Malag A, Dabrowska E, Teodorczyk M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes [J]. IEEE J. Quant. Elect., 2012, 48(4):465-471.[8] Liang W, Xu Y, Choi J M, et al. Engineering transverse Bragg resonance waveguides for large modal volume lasers [J]. Opt. Lett., 2003, 28(21):2079-2081.[9] Yariv A, Xu Y, Mookherjea S. Transverse Bragg resonance laser amplifier [J]. Opt. Lett., 2003, 28(3):176-178.[10] Her T H. Gain-guiding in transverse grating waveguides for large modal area laser amplifiers [J]. Opt. Exp., 2008, 16(10):7197-7202.[11] Zhu L, Scherer A, Yariv A. Modal gain analysis of transverse Bragg resonance waveguide lasers with and without transverse defects [J]. IEEE J. Quant. Elect., 2007, 43(10):934-940.[12] Tao M M, Yang P L, Liu W P, et al. Response characteristics of fiber Bragg gratings irradiated by high energy lasers [J]. Chin. Opt. [HTK](中国光学), 2012, (5):544-549 (in Chinese).[13] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285(5433):1537-1539.[14] Bijlani B J, Helmy A S. Bragg reflection waveguide diode lasers [J]. Opt. Lett., 2009, 34(23):3734-3736.[15] Tong C Z, Bijlani B J, Alali S, et al. Characteristics of edge emitting Bragg reflection waveguide lasers [J]. IEEE J. Quant. Elect., 2010, 46(11):1605-1610.[16] Tong C Z, Bijlani B J, Zhao L J, et al. Mode selectivity in bragg reflection waveguide lasers [J]. IEEE Photon. Technol. Lett., 2011, 23(14):1025-1027.[17] Maximov M V, Shernyakov Y M, Novikov I I, et al. High-power low-beam divergence edge-emitting semiconductor lasers with 1- and 2-D photonic bandgap crystal waveguide [J]. IEEE J. Select. Topics Quant. Elect., 2008, 14(4):1113-1122.[18] Kataoka K. Analysis of banding problem in multiple beam scanning system of laser printer [J]. Opt. Rev., 2008, 15(4):196-203.[19] Heidmann A, Horowicz R J, Reynaud S, et al. Observation of quantum noise reduction on twin laser beams [J]. Phys. Rev. Lett., 1987, 59(22):2555-2557.[20] Jechow A, Lichtner M, Menzel R, et al. Stripe-array diode-laser in an off-axis external cavity: Theory and experiment [J]. Opt. Exp., 2009, 17(22):19599-19604.[21] Ouyang D, Heitz R, Ledentsov N N, et al. Lateral-cavity spectral hole burning in quantum-dot lasers [J]. Appl. Phys. Lett., 2002, 81(9):1546-1548.[22] Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography [J]. Semicond. Sci. Technol., 2005, 20(11):1149-1152.[23] Feise D, John W, Bugge F, et al. 96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface grating [J]. Opt. Lett., 2012, 37(9):1532-1534.
0
浏览量
98
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构