浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学, 北京 100049
收稿日期:2013-04-12,
修回日期:2013-05-17,
纸质出版日期:2013-09-10
移动端阅览
张祥伟, 宁永强, 秦摇莉, 刘摇云, 王立军. 利用亚波长矩形金属光栅稳定980 nm高功率垂直腔面发射激光器偏振[J]. 发光学报, 2013,34(9): 1188-1193
ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Stable Polarization Control of 980 nm High-power Vertical-cavity Surface-emitting Lasers Using Sub-wavelength Rectangular-metal-gratings[J]. Chinese Journal of Luminescence, 2013,34(9): 1188-1193
张祥伟, 宁永强, 秦摇莉, 刘摇云, 王立军. 利用亚波长矩形金属光栅稳定980 nm高功率垂直腔面发射激光器偏振[J]. 发光学报, 2013,34(9): 1188-1193 DOI: 10.3788/fgxb20133409.1188.
ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Stable Polarization Control of 980 nm High-power Vertical-cavity Surface-emitting Lasers Using Sub-wavelength Rectangular-metal-gratings[J]. Chinese Journal of Luminescence, 2013,34(9): 1188-1193 DOI: 10.3788/fgxb20133409.1188.
利用亚波长矩形金属光栅的偏振特性
在垂直腔面发射激光器的有源区引入各向异性增益从而达到控制其偏振的目的。光栅参数设计基于均匀介质理论和抗反射理论
光栅设计周期为186 nm
占空比为0.5
并且光栅制作于GaAs盖层来对TE偏振光提供额外的反射率。经过设计分析对p-DBRs的对数进行了缩减
并且将光栅条之间的盖层区域刻蚀掉
刻蚀深度为1 m左右。盖层刻蚀的结果使电流注入的方向严格沿着光栅条线性注入的有源区
从而增加了非均匀增益并提高了偏振比。通过多物理场有限元分析软件对器件进行了模拟分析
结果基本上符合设计要求。通过优化工艺步骤
最终得到了550 m孔径器件的输出功率为780 mW
并且偏振比达到4.8的结果。
The polarization control of vertical-cavity surface-emitting lasers with high power emission is demonstrated by using metal-grating to import non-isotropic gain. The grating with a period of 186 nm and a duty ratio of 0.5 was fabricated on the GaAs-cap layer to provide additional reflectance for TE polarization. The pairs of p-DBRs were reduced and the GaAs-cap between grating stripes was etched to force the current to be injected linearly along grating stripes to realize the maximum non-isotropic gain. A polarization ratio of 4.8
an output power of 780 mW and high temperature performance were demonstrated for a 550 m aperture device. Key words : vertical-cavity surface-emitting laser; metal-grating; polarization controlling CLC number: TN248.4 Document code: A
Kosaka H. Smart integration and packaging of 2D VCSELs of high speed parallel links[J]. IEEE Select. Topics Quant. Elect., 1999, 5(2):184-192.[2] Huffaker D L, Deppe D G, Kumar K, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers [J]. Appl. Phys. Lett., 1994, 65(1):97-99.[3] Seurin J F, Ghosh C L, Khalfin V, et al. High-power high-efficiency 2D VCSEL arrays [J]. SPIE, 2008, 6908:690808-1-14. [4] Geels R S, Corzine S W, Coldren L A. InGaAs vertical cavity surface emitting lasers [J]. IEEE J. Quantum Elect., 1991, 27(6):1359-1367.[5] Iga K, Ishikawa S, Ohkouchi S, et al. Room temperature plused oscillation of GaAlAs/GaAs surface emitting injection laser [J]. Appl. Phys. Lett., 1984, 45(4):348-350.[6] Tell B, Lee Y H, Brown-Goebeler K F, et al. High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers [J]. Appl. Phys. Lett., 1990, 57(18):1855-1857.[7] Zhang X, Ning Y Q, Zeng Y G, et al. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array [J]. Opt. Precision Eng.[HTK](光学 精密工程),[HTSS] 2011, 19(9):2014-2022 (in Chinese).[8] Wang Z F, Ning Y Q, Zhang Y, et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array [J]. Opt. Exp., 2010, 18(23):23900-1-6. [9] Chong C H, Sarma J. Lasing mode selection in vertical cavity surface emitting laser diodes [J]. IEEE Photon. Technol. Lett., 1993, 5(7):761-763.[10] Bond A E, Dapkus P D, OBrien J D. Aperture dependent loss analysis in vertical-cavity surface-emitting lasers [J]. IEEE Photon. Technol. Lett., 1999, 11(4):397-399.[11] Grabherr M, King R, Jger R, et al. Volume production of polarization controlled single-mode VCSELs [J]. SPIE, 2008, 6908(1):690803-1-8.[12] Schnabel B, Kley E B, Frank W. Efficient coupling into polymer waveguides by gratings [J]. Appl. Opt., 1997, 36(36):9383-9390.[13] Kou J L, Chen Y, Xu F, et al. Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure [J]. Opt. Exp., 2012, 20(27):28431-28436.[14] Takahashi Y, Neogi A, Kawaguchi H. Polarization dependent nonlinear gain in semiconductor lasers [J]. IEEE J. Quant. Elect., 1998, 34(9):1660-1672.[15] Wang W, Ning Y Q, Tian Z H, et al. Coherent polarization stabilization in large-aperture rectangular post bottom-emitting vertical-cavity surface-emitting lasers [J]. Opt. Commun., 2011, 284(5):1335-1338.[16] Jiao D, Jin J M. Three-dimensional orthogonal vector basis functionsf or time-domain finite element solution of vector wave equations [J]. IEEE Trans. Anten. Prop., 2003, 51(1):59-66.[17] Wulf K T, Zamora M, Kanwar R, K. et al. Processing of photonic crystals in InP membranes by focused ion beam milling and plasma etching [J]. Microelectron. Eng., 2013, 102(1):25-28.[18] Bomzon Z, Kleiner V, Hasman E. Spatial fourier-transform polarimetry using space-variant subwavelength metal-stripe polarizers [J]. Opt. Commun., 2001, 26(21):1711-1713.[19] Wilkinson C I, Woodhead J, Frost J E F, et al. Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal [J]. IEEE Photon. Technol. Lett., 1999, 11(2):155-157.[20] Sun Y F, Ning Y Q, Li T, et al. Large aperture VCSELs with a continuous-wave output power of 1.95 W [J]. J. Lumin., 2007, 122-123:886-888.
0
浏览量
147
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构