浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
2. 黑龙江大学 功能无机材料化学教育部重点实验室, 化学化工与材料学院,黑龙江 哈尔滨,150080
收稿日期:2013-05-22,
修回日期:2013-07-05,
纸质出版日期:2013-09-10
移动端阅览
徐冰玉, 王国凤, 李莹, 刘帅, 冯莉, 张继森. SrWO<sub>4</sub>:Eu<sup>3+</sup>纳米晶的合成、表征和光致发光性能[J]. 发光学报, 2013,34(9): 1178-1182
XU Bing-yu, WANG Guo-feng, LI Ying, LIU Shuai, FENG Li, ZHANG Ji-sen. Synthesis, Characterization, and Photoluminescence of SrWO<sub>4</sub>:Eu<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(9): 1178-1182
徐冰玉, 王国凤, 李莹, 刘帅, 冯莉, 张继森. SrWO<sub>4</sub>:Eu<sup>3+</sup>纳米晶的合成、表征和光致发光性能[J]. 发光学报, 2013,34(9): 1178-1182 DOI: 10.3788/fgxb20133409.1178.
XU Bing-yu, WANG Guo-feng, LI Ying, LIU Shuai, FENG Li, ZHANG Ji-sen. Synthesis, Characterization, and Photoluminescence of SrWO<sub>4</sub>:Eu<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(9): 1178-1182 DOI: 10.3788/fgxb20133409.1178.
用CTAB辅助水热法合成了四方相的SrWO
4
:Eu
3+
纳米晶体。通过X射线衍射仪和扫描电子显微镜等测试手段对样品进行了表征。SrWO
4
:Eu
3+
纳米晶粒尺寸随着反应溶液中Eu
3+
离子和CTAB含量的增加而减小。在393 nm光激发下
观察到
5
D
0
7
F
*
=1
2
3
4)和
5
D
1
7
F
0
跃迁
并且
5
D
0
7
F
2
跃迁的发射最强
表明Eu
3+
在SrWO
4
基质中占据了非对称中心的格位。发射峰的位置与激发波长无关。
Tetragonal phase SrWO
4
and SrWO
4
:Eu
3+
nanocrystals were synthesized by a CTAB-assisted hydrothermal method. The nanocrystals were characterized by X-ray diffraction (XRD)
scanning electron microscope (SEM). The crystalline size of SrWO
4
:Eu
3+
decreases with the increasing of Eu
3+
and CTAB content in the reaction solutions gradually. Under 393 nm excitation
the
5
D
0
7
F
J
=1
2
3
4) and
5
D
1
7
F
0
transitions are observed
and the luminescence is dominated by
5
D
0
7
F
2
transition
indicating that Eu
3+
occupies a site lacking inversion symmetry. The positions of emission peaks are independent of excitation wavelength. When the excitation is performed at 466 nm
the emission intensity is the strongest.
Riwotzki K, Meyssamy H, Schnablegger H, et al. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals [J]. Angew. Chem. Int. Ed., 2001, 40(3):573-576.[2] Kawano K, Arai K, Yamada H, et al. Application of rare-earth complexes for photovoltaic precursors [J]. Sol. Energy Mater. Sol. Cells, 1997, 48(5):35-41.[3] Wang G, Qin W, Zhang J, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles [J]. J. Phys. Chem. C, 2008, 112(32):12161-12167.[4] Yang Z, Yan D, Zhu K, et al. Color tunability of upconversion emission in YBO3:Yb, Er inverse opal [J]. Opt. Lett., 2001, 22:1245-1248.[5] Wang F, Han Y, Lim C, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463(7284):1061-1065.[6] Feldmann C, Jstel T, Ronda C, et al. Inorganic luminescent materials: 100 years of research and application [J]. Adv. Funct. Mater., 2003, 13(7):511-516.[7] Ren Y, Lv S. Excitation spectrum intensity adjustment of SrWO4:Eu3+ red phosphors for light-emitting diode [J]. Acta Phys. Sinica (物理学报), 2011, 60(8):087404-1-6 (in Chinese).[8] Wang W, Yang P, Gai S, et al. Fabrication and luminescent properties of CaWO4:Ln3+(Ln=Eu, Sm, Dy) nanocrystals [J]. J. Nanopart. Res., 2010, 12(6):2295-2305.[9] Thongtem T, Kungwankunakorn S, Kuntalue B, et al. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature [J]. J. Alloys Compd., 2010, 506(1):475-478.[10] Wang Z, Wang Y, Li Y, et al. Low dimensional effects on luminescent properties of CaWO4:Tb nanophosphor Sensors and displays:Principles, materials, and processing [J]. J. Electrochem. Soc., 2010, 157(4):J125-J129.[11] Xiao Q, Zhou Q, Li M. Synthesis and photoluminescence properties of Sm3+-doped CaWO4 nanoparticles [J]. J. Lumin., 2010, 130:1092-1094.[12] Thongtem T, Kaowphong S, Thongtem S. Influence of cetyltrimethylammonium bromide on the morphology of AWO4(A=Ca, Sr) prepared by cyclic microwave irradiation [J]. Appl. Surf. Sci., 2008, 254(23):7765-7769.[13] Wang Y, Ma J, Tao J, et al. Synthesis of CaWO4 nanoparticles by a molten salt method [J]. Mater. Lett., 2006, 60(2):291-293.[14] Luo Z, Li H, Xia J, et al. Controlled synthesis of different morphologies of BaWO4 crystals via a surfactant-assisted method [J]. J. Cryst. Growth, 2007, 300:523-529.[15] Sun L, Cao M, Wang Y, et al. The synthesis and photoluminescent properties of calcium tungstate nanocrystals [J]. J. Cryst. Growth, 2006, 289:231-235.[16] Tanaka K, Fukui K, Ohga K, et al. CaWO4 thin films synthesized by pulsed laser deposition [J]. J. Vac. Sci. Technol. A, 2002, 20(2):486-491.[17] Chen Z, Gong Q, Zhu J, et al. Controllable synthesis of hierarchical nanostructures of CaWO4 and SrWO4 via a facile low-temperature route [J]. Mater. Res. Bull., 2009, 44:45-50.[18] Shi H, Qi L, Ma J, et al. Synthesis of single crystal BaWO4 nanowires in catanionic reverse micelles [J]. Chem. Commun., 2002, 16:1704-1705.[19] Tian Y, Chen B, Yu H, et al. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres [J]. J. Colloid Interf. Sci., 2011, 360(2):586-592.[20] Bao K, Guo G, Sun H, et al. Controlled synthesis of calcium tungstate microstructures with different morphologies in an AOT/TEA/H2O system [J]. Asian J. Chem., 2011, 23:1531-1534.[21] Phuruangrat A, Thongtem T, Thongtem S. Synthesis, characterization and photoluminescence properties of nanocrystalline calcium tungstate [J]. J. Exp. Nanosci., 2010, 5(3):263-270.[22] Xing Y, Song S, Feng J, et al. Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure [J]. Solid State Sci., 2008, 10(10):1299-1304.[23] Ray S, Pramanik P. Optical properties of nanocrystalline Y2O3:Eu3+ [J]. J. Appl. Phys., 2005, 97(9):094312-1-5.[24] Judd B. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3):750-761.[25] Ofelt G. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3):511-520.[26] Wang G, Qin W, Zhang J, et al. Synthesis and spectral properties of Eu3+-doped YF3 nanobundles [J]. J. Fluorine Chem., 2008, 129(1):621-624.
0
浏览量
66
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构