浏览全部资源
扫码关注微信
南京电子器件研究所 微波毫米波单片集成和模块电路重点实验室,江苏 南京,210016
收稿日期:2013-04-15,
修回日期:2013-06-24,
纸质出版日期:2013-08-10
移动端阅览
高汉超, 尹志军, 程伟, 王元, 许晓军, 李忠辉. 基于间接跃迁模型的p<sup>+</sup>-GaAsSb费米能级研究[J]. 发光学报, 2013,34(8): 1057-1060
GAO Han-chao, YIN Zhi-jun, CHENG Wei, WANG Yuan, XU Xiao-jun, LI Zhong-hui. Study of Fermi Level of p<sup>+</sup>-doped GaAsSb by Indirect Transition Model[J]. Chinese Journal of Luminescence, 2013,34(8): 1057-1060
高汉超, 尹志军, 程伟, 王元, 许晓军, 李忠辉. 基于间接跃迁模型的p<sup>+</sup>-GaAsSb费米能级研究[J]. 发光学报, 2013,34(8): 1057-1060 DOI: 10.3788/fgxb20133408.1057.
GAO Han-chao, YIN Zhi-jun, CHENG Wei, WANG Yuan, XU Xiao-jun, LI Zhong-hui. Study of Fermi Level of p<sup>+</sup>-doped GaAsSb by Indirect Transition Model[J]. Chinese Journal of Luminescence, 2013,34(8): 1057-1060 DOI: 10.3788/fgxb20133408.1057.
重p型掺杂GaAsSb广泛应用于InP HBT基区材料
重掺杂影响GaAsSb材料的带隙和费米能级等重要参数
这些参数对设计高性能HBT起着关键作用。本文通过间接跃迁模型研究了p
+
-GaAsSb材料的荧光性质
以及费米能级与Sb组分的关系。由于费米能级与空穴有效质量
m
h
和空穴态密度
n
h
存在函数关系
我们通过荧光测量并计算了空穴有效质量
m
h
和空穴态密度
n
h
研究结果表明
m
h
和
n
h
共同主导了费米能级的变化。
Heavily p
+
-doped GaAsSb is extensively applied in InP HBT base material
it influences many important parameters
such as band gap and Fermi level. These parameters are key factors for the design of high performance HBT devices. This work studied photoluminescence of p
+
- GaAsSb in the model of indirect transition
especially the relationship between GaAsSb Fermi level and Sb composition. The hole effective mass (
m
h
) and hole density (
n
h
) were measured and calculated because Fermi level
m
h
and
n
h
had functional relationship. It is found that
m
h
and
n
h
result in the change of Fermi level.
Maneux C, Grandchampl B, Labat N, et al. LF noise analysis of InP/GaAsSb/InP and InP/InGaAs/InP HBTs [C]//Proceedings of The 1st European Microwave Integrated Circuits Conference, Manchester: Microwave Journal, 2006:468-471.[2] Low T S, Dvorak M W, Farhoud M, et al. GaAsSb DHBT IC technology for RF and microwave instrumentation [C]//Compound Semiconductor Integrated Circuit Symposium, California: Palm Springs, 2005:69-72.[3] Zeng Y P, Ostinelli O, Lovblom R, et al. 400-GHz InP/GaAsSb DHBTs With low-noise microwave performance [J]. Electron Device Lett., 2010, 31(10):1122-1124.[4] Snodgrass W, Wu B R, Hafez W, et al. Graded base type-Ⅱ InP/GaAsSb DHBT with fT=475 GHz [J]. Electron Device Lett., 2006, 27(2):84-86.[5] Tian Y, Wang H. Analysis of DC characteristics of GaAs double heterojuction bipolar transistor [J]. Microelectronics Journal, 2006, 37(1):38-43.[6] Miller R C, Kleinman D A, Nordland W A, et al. Electron spin relaxation and photoluminescence of Zn-doped GaAs [J]. Phys. Rev. B, 1981, 23(9):4399-4406.[7] Olego D, Cardona M. Photoluminescence in heavily doped GaAs. I. Temperature and hole-concentration dependence [J]. Phys. Rev. B, 1980, 22(2):886-893.[8] Chen H D, Feng M S, Chen P A, et al. Low-temperature luminescent properties of degenerate p-type GaAs grown by low-pressure metalorganic chemical vapor deposition [J]. J. Appl. Phys., 1994, 75(4):2210-2214.
0
浏览量
142
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构