浏览全部资源
扫码关注微信
华南理工大学 电子与信息学院,广东 广州,510640
收稿日期:2013-06-10,
修回日期:2013-06-24,
纸质出版日期:2013-08-10
移动端阅览
苏晶, 莫昌文, 刘玉荣. 沟道宽度对ZnO-TFT电学性能的影响[J]. 发光学报, 2013,34(8): 1046-1050
SU Jing, MO Chang-wen, LIU Yu-rong. Effects of Channel Width on The Electrical Properties of ZnO-based Thin Film Transistor[J]. Chinese Journal of Luminescence, 2013,34(8): 1046-1050
苏晶, 莫昌文, 刘玉荣. 沟道宽度对ZnO-TFT电学性能的影响[J]. 发光学报, 2013,34(8): 1046-1050 DOI: 10.3788/fgxb20133408.1046.
SU Jing, MO Chang-wen, LIU Yu-rong. Effects of Channel Width on The Electrical Properties of ZnO-based Thin Film Transistor[J]. Chinese Journal of Luminescence, 2013,34(8): 1046-1050 DOI: 10.3788/fgxb20133408.1046.
用射频磁控溅射法生长的ZnO薄膜作为有源层
制备出了ZnO基薄膜晶体管(ZnO-TFT)
并在空气环境下350℃退火1 h
研究了沟道宽度对ZnO-TFT器件性能的影响。实验结果表明:阈值电压随着沟道宽度的减小而增加
这是由于沟道越窄
载流子被捕获的几率越大
在相同栅压下沟道内可动载流子浓度越小
相应的阈值电压就越大;饱和迁移率随着沟道宽度的减小而增加
认为这是由源/漏电阻的侧壁效应及边缘电子场效应引起的附加电流所致。
ZnO-based thin film transistors (ZnO-TFTs) with RF-sputtered ZnO active layer were fabricated at room temperature
and then annealed at 350℃ for 1 h in the air environment. Effects of channel width on the electrical properties of ZnO-TFTs were investigated. The threshold voltage increases with the decrease of the channel width
that is because the more narrower the channel width is
the more greater probability of carriers is captured
the less free carriers are under the same gate voltage
so that the more greater the threshold voltage is. The saturation carrier mobility also increases with the decrease of the channel width
due to the side wall effect associated with source/drain resistance as well as the fringing electronic-field effects which led to an additional current flow beyond the device edges.
Hong W K, Song S H, Hwang D K, et al. Effects of surface roughness on the electrical characteristics of ZnO nanowire field effect transistors [J]. Appl. Surf. Sci., 2008, 254(23):7559-7564.[2] Pang H X, Liu C Z, Xie A, et al. Effect of annealing temperature on structure and optical properties of sheet-like ZnO crystals [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2012, 27(2):158-162 (in Chinese).[3] Fortunato E, Pimentel A, Pereira L, et al. High field-effect mobility zinc oxide thin film transistors produced at room temperature [C]//20th International Conference on Amorphous and Microcrystalline Semiconductors, Campos Do Jordao, Brazil: Elsevier Science, 2004:806-809.[4] Park S H K, Hwang C S, Jeong H Y, et al. Transparent ZnO-TFT arrays fabricated by atomic layer deposition [J]. Electrochem. Solid-State Lett., 2008, 11(1):H10-H14.[5] Remashan K, Choi Y S, Park S J, et al. Enhanced performance of MOCVD ZnO TFTs on glass substrates with nitrogen-rich silicon nitride gate dielectric [J]. J. Electrochem. Soc., 2010, 157(1):H60-H64.[6] Siddiqui J J, Phillips J D, Leedy K, et al. Bias temperature stress analysis of ZnO thin film transistors with HfO2 gate dielectrics [C]//2011 69th Annual Device Reaeach Conference, Santa Barbara, USA: IEEE, 2011:75-76.[7] Ci L, Li Y, Wu Y, et al. Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors [J]. J. Mater. Chem., 2009, 19(11):1626-1634.[8] Barquinha P, Pimentel A, Marques A, et al. Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide [J]. J. Non-Cryst. Solids, 2006, 352(9-20):1756-1760.[9] Kim M, Jeong J H, Lee H J, et al. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper [J]. Appl. Phys. Lett., 2007, 90(21):212214-1-3.[10] Kim D H, Kim H R, Kwon J D, et al. Sputter-deposited Ga-Sn-Zn-O thin films for transparent thin film transistors [J]. Phys. Status Solidi (a), 2011, 208(12):2934-2938.[11] Yan J F, Wu Z M, Tai H L, et al. Study on the performance of organic thin film transistors with different ratio of channel width to length [J]. Semicond. Optoelectron.(半导体光电), 2011, 23(1):52-55 (in Chinese).[12] Choi W S. Effect of channel scaling on zinc oxide thin-film transistor prepared by atomic layer deposition [J]. Transactions on Electrical and Electronic Materials, 2010, 11(6):253-256.[13] Zhang X A, Zhang J W, Zhang W F, et al. Effect of annealing temperature on electrical properties of ZnO-TFT [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2009, 24(4):557-561 (in Chinese).[14] Peng L P, Fang L, Yang X F, et al. Microstructures and properties characterization of In-doped ZnO films [J]. Chin. J. Vac. Sci. Technol.(真空科学与技术学报), 2011, 30(6):680-684 (in Chinese).[15] Liu Y R, Ren L F, Yang R H, et al. Effects of annealing temperature on electrical properties of ZnO thin-film transistors [J]. J. South China Univ. Technol.(Natural Science Edition)(华南理工大学学报:自然科学版), 2011, 39(9):104-107.[16] Chung J H, Lee J Y, Kim H S, et al. Effect of thickness of ZnO active layer on ZnO-TFT's characteristics [J]. Thin Solid Films, 2008, 516(16):5597-5601.[17] Ma X M, Jing H, Ma K, et al. ZnO films and properties of ZnO-TFT [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2009, 24(3):393-395 (in Chinese).[18] Fortunato E, Pimentel A, Pereira L, et al. High field-effect mobility zinc oxide thin film transistors produced at room temperature //20th International Conference on Amorphous and Microcrystalline Semiconductors, Campos Do Jordao, Brazil: Elsevier Science, 2004:806-809.[19] Wu W J, Yan J, Xu Z P, et al. Property comparison between IGZO TFT and ZnO TFT [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(2):147-153 (in Chinese).
0
浏览量
179
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构