浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院大学, 北京 100049
3. 东北师范大学, 吉林 长春 130024
收稿日期:2013-03-26,
修回日期:2013-04-19,
纸质出版日期:2013-08-10
移动端阅览
陈泳屹, 秦莉, 王立军, 刘益春. 金属光栅的非对称透射现象研究[J]. 发光学报, 2013,34(8): 1040-1045
CHEN Yong-yi, QIN Li, WANG Li-jun, LIU Yi-chun. Numerical Study on The Unsymmetrical Transmission Phenomenon in Metal Gratings[J]. Chinese Journal of Luminescence, 2013,34(8): 1040-1045
陈泳屹, 秦莉, 王立军, 刘益春. 金属光栅的非对称透射现象研究[J]. 发光学报, 2013,34(8): 1040-1045 DOI: 10.3788/fgxb20133408.1040.
CHEN Yong-yi, QIN Li, WANG Li-jun, LIU Yi-chun. Numerical Study on The Unsymmetrical Transmission Phenomenon in Metal Gratings[J]. Chinese Journal of Luminescence, 2013,34(8): 1040-1045 DOI: 10.3788/fgxb20133408.1040.
提出一种利用表面等离子体耦合的金属光栅结构
该光栅结构因入射光的方向和耦合表面等离子体的条件不同
从不同方向入射时会有不同的透射率。周期为500 nm、填充因子为0.7的Au-SiO
2
光栅结构在565~589 nm波段具有单向透射性。当填充因子为0.662时
最大透射对比率达310
4
。当光栅厚度为60 nm时
入射波长在570~630 nm之间的透射对比率均可达到5以上
最高透射率为43%。当光栅周期为1 100 nm时
1 530~1 590 nm波段的透射对比率均大于5
可以满足中红外波段的应用。
A kind of metal gratings based on surface plasmon coupling was presented in this paper. The metal grating has different transmission rate according to incident direction because of different surface plasmon coupling conditions. The unsymmetrical transmission phenomenon appears for the Au-SiO
2
grating when the periodic is 500 nm and the filling factor is 0.7
particularly for wavelength from 565 to 589 nm. A maximum transmission contrast of more than 310
4
is found at filling factor 0.662. When the thickness of Au is 60 nm
the transmission contrast is more than 5 during 570~630 nm
and the maximum transmission is 43%. When the periodic is 1 100 nm
the transmission contrast is more than 5 during 1 530~1 590 nm
which satisfies for the mid-infrared applications.
Scalora M, Dowling J P, Bowden C M, et al. The photonic band edge optical diode [J]. J. Appl. Phys., 1994, 76(4):2023-2026.[2] Tocci M D, Bloemer M J, Scalora M, et al. Thin-film nonlinear optical diode [J]. Appl. Phy. Lett., 1995, 66(18):2324-2326.[3] Lin X S, Yan J H, Wu L J, et al. High transmission contrast for single resonator based all-optical diodes with pump-assisting [J]. Opt. Exp., 2008, 16(25):20949-20954.[4] Zhou H, Zhou K F, Hu W, et al. All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs [J]. J. Appl. Phys., 2006, 99(12):123111-1-9.[5] Mingaleev S F, Kivshar Y S. Nonlinear transmission and light localization in photonic-crystal waveguides [J]. J. Opt. Soc. Am. B, 2002, 19(9):2241-2249.[6] Gevorgyan A H, Harutyunyan M Z. Chiral photonic crystals with an anisotropic defect layer [J]. Phys. Rev. E, 2007, 76(3):031701-1-9.[7] Feise M W, Shadrivov I V, Kivshar Y S. Bistable diode action in left-handed periodic structures [J]. Phys. Rev. E, 2005, 71(3):037602-1-4.[8] Khanikaev A B, Steel M J. Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices [J]. Opt. Exp., 2009, 17(7):5265-5272.[9] Maier S A. Plasmonics: Fundamentals and Applications [M]. United Kingdom: Springer, 2007:21.[10] Han J, Fan Y C, Zhang Z R. Propagation of surface plasmon polaritons in a ring resonator with PT-symmetry [J]. Chin. J. Lumin.(发光学报), 2012, 33(8):901-904 (in Chinese).[11] Yang Z L, Fang W, Yang Y Q. Two-photon-excited fluorescence enhancement caused by surface plasmon enhanced exciting light [J]. Chin. J. Lumin.(发光学报), 2013, 34(2):240-244 (in Chinese).[12] Zheng L, Zhao Y P. Identification of Pu'er teas with different fermentation time by surface-enhanced raman scattering technology[J]. Chin. J. Lumin.(发光学报), 2013, 34(2):230-234 (in Chinese).[13] Hu X, Zhang Y, Xu X, et al. Nanoscale surface plasmon all-optical diode based on plasmonic slot waveguides [J]. Plasmonics, 2011, 6(4):619-624[14] Yang Y, Turnbull G A, Samuel I D W. Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode [J]. Appl. Phys. Lett., 2008, 92(16):163306-1-3.[15] Hide F, Schwartz B J, Daz-Garca M A, et al. Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals [J]. Chem. Phys. Lett., 1996, 256(4-5):424-430.[16] Barnes W L, Dereu A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(14):824-830.[17] Ditlbacher H, Krenn J R, Hohenau A, et al. Efficiency of local light-plasmon coupling [J]. Appl. Phys. Lett., 2003, 83(18):3665-3667.[18] Ghaemi H F, Thio T, Grupp D E. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B, 1998, 58(11):6779-6782.[19] Lin L, Reeves R J, Blaikie R J. Surface-plasmon-enhanced light transmission through planar metallic films [J]. Phys. Rev. B, 2006, 74(15):155407-1-6.[20] Guillaume M, Nikitin A Y, Klein M J K, et al. Observation of enhanced transmission for s-polarized light through a subwavelength slit [J]. Opt. Exp., 2010, 18(9):9722-9727.
0
浏览量
301
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构