浏览全部资源
扫码关注微信
1. 香港科技大学 物理系,香港,999077
2. 中山大学理工学院 光电材料国家重点实验室,广东 广州,510000
收稿日期:2013-05-08,
修回日期:2013-06-03,
纸质出版日期:2013-08-10
移动端阅览
王玉超, 吴天准, 苏龙兴, 张权林, 陈明明, 汤子康. 高质量ZnO及BeZnO薄膜的发光性质[J]. 发光学报, 2013,34(8): 1035-1039
WANG Yu-chao, WU Tian-zhun, SU Long-xing, ZHANG Quan-lin, CHEN Ming-ming, TANG Zi-kang. Luminescence Characteristics of High-quality ZnO and BeZnO Films[J]. Chinese Journal of Luminescence, 2013,34(8): 1035-1039
王玉超, 吴天准, 苏龙兴, 张权林, 陈明明, 汤子康. 高质量ZnO及BeZnO薄膜的发光性质[J]. 发光学报, 2013,34(8): 1035-1039 DOI: 10.3788/fgxb20133408.1035.
WANG Yu-chao, WU Tian-zhun, SU Long-xing, ZHANG Quan-lin, CHEN Ming-ming, TANG Zi-kang. Luminescence Characteristics of High-quality ZnO and BeZnO Films[J]. Chinese Journal of Luminescence, 2013,34(8): 1035-1039 DOI: 10.3788/fgxb20133408.1035.
用分子束外延设备插入缓冲层在
c
面蓝宝石上生长得到高质量ZnO和BeZnO薄膜。XRD测试显示薄膜具有六方结构和
c
轴取向
并具有良好的晶体质量
其中ZnO薄膜的半高宽仅为108 arcsec
Be
x
Zn
1-
x
O薄膜的半高宽小于600 arcsec。对ZnO和BeZnO薄膜的拉曼光谱进行对比研究发现
随着Be元素的掺入
A
1
(LO)、A
1
(2LO)声子模频率往大波数方向移动
并且首次发现了与Be元素掺杂有关的局域振动模。利用变温光致发光光谱研究了薄膜的发光性质
结果显示ZnO薄膜室温光致发光只出现一个紫外发发光峰(378 nm)
而低温光谱(80 K)则出现了很强的自由激子发光峰。随着温度的升高
束缚激子发光逐渐湮灭向自由激子发光转变
并且峰值位置红移。相对于ZnO薄膜
BeZnO薄膜的紫外发光主峰位置蓝移
并且由于Be元素的掺入导致薄膜晶体质量下降
在低温(80 K)光致发光光谱中没有出现强的自由激子发光峰。另外
在低温光致发光及拉曼光谱中
主峰位置在100~200 K之间有局部最大值
推测为由于合金晶格热膨胀系数失配而引起的应力效应。
High-quality ZnO and BeZnO films were grown on
c
-plane sapphire substrate using plasma-assisted molecular beam epitaxy (P-MBE) by inserting metal oxide buffer layers. X-ray diffraction(XRD) results show that all films have hexagonal wurtzite structure and highly
c
-axis orientation. The full width at half maximum (FWHM) of ZnO film is as low as 108 arcsec
and the FWHM of BeZnO film is less than 600 arcsec. The resonance Raman spectra show that both A
1
(LO) and A
1
(2LO) phonon modes shift to larger wavenumber with more Be doping. For the first time
the local vibration mode related to Be doping is found. The photoluminescence (PL) spectrum of ZnO films has only one emission peak(378 nm) at room temperature. However
another peak due to the strong free exciton emission is observed at low temperature (80 K). With the temperature increasing
the free exciton emission dominated over the bound exciton emission
and its peak shows gradual red shift. As for BeZnO film
the strong free exciton emission peak is not found at low temperature (80 K) due to the declined crystal quality caused by the incorporation of Be. It is also found that the peak position of BeZnO films in the PL and Raman spectra have local maximum values between 100~200 K
which is suggested to be caused by the stress effect due to the thermal expansion mismatch of the alloy lattices.
Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72(25):3270-3272.[2] Fan X W. Research progress on growth and optical properties of wide band gap Ⅱ-Ⅵ compound semiconductors and its low dimensional structure [J]. Chin. J. Lumin.(发光学报), 2002, 23(4):17-324 (in Chinese).[3] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.[4] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4(1):42-46.[5] Look D C. Recent advances in ZnO materials and devices [J]. Mater. Sci. Eng. B, 2001, 80(1-3):83-87.[6] Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Appl. Phys. Lett., 1998, 73(8):1038-1040.[7] Asahara H, Takamizu D, Inokuchi A, et al.Characterization of MgZnO films grown by plasma enhanced metal-organic chemical vapor deposition [J]. Thin Solid Films, 2010, 518(11):2953-2956.[8] zgr , Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4):041301-1-3.[9] Ohtomo A, Kawasaki M, T Koida, et al. MgxZn1-xO as a Ⅱ-Ⅵ wide gap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.[10] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films [J]. Appl. Phys. Lett., 2001, 78(9):1237-1239.[11] Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Appl. Phys. Lett., 2008, 93(17):173505-1-3.[12] Du X, Mei Z, Liu Z, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21(45):4625-4630.[13] Wei Z P, Wu C X, Lu Y M, et al. MgxZn1-xO alloy grown by p-MBE and optical properties of MgZnO/ZnO heterostructure [J]. Chin. J. Lumin.(发光学报), 2006, 27(5):832-833 (in Chinese).[14] Zhu H, Shan C X, Li B H, et al. Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy [J]. J. Appl. Phys., 2009, 105(10):103508-1-5.[15] Ryu Y R, Lee T S, Lubguban J A, et al. Wide-band gap oxide alloy: BeZnO [J]. Appl. Phys. Lett., 2006, 88(5):052103-1-3.[16] Li X P, Cao P J, Su S C, et al. Investigation on near band edge UV luminescence of ZnO thin films [J]. Chin. J. Lumin.(发光学报), 2012, 33(5):482-484 (in Chinese).[17] Shi C S, Zhang G B, Chen Y H, et al. Special spectroscopic properties of ZnO thin film and its mechanisms [J]. Chin. J. Lumin.(发光学报), 2004, 25(3):273-275 (in Chinese).[18] Hamby D W, Lucca D A, Klopfstein M J, et al. Temperature dependent exciton photoluminescence of bulk ZnO [J]. J. Appl. Phys., 2003, 93(6):3214-3217.[19] Rieger W, Metzger T, Angerer H, et al. Influence of substrate induced biaxial compressive stress on the optical properties of thin GaN films [J]. Appl. Phys. Lett., 1996, 68(7):970-972.[20] Cusc R, Alarcn-Llad E, Ibez J, et al. Temperature dependence of Raman scattering in ZnO [J]. Phys. Rev. B, 2007, 75(16):165202-1-11.[21] Calleja J M, Cardona M. Resonant Raman scattering in ZnO [J]. Phys. Rev. B, 1977, 16(8):3753-3761.[22] Guo L L, Zhang Y H, Shen W Z. Temperature dependence of Raman scattering in GaMnN [J]. Appl. Phys. Lett., 2006, 89(16):161920-1-3.[23] Link A, Bitzer K, Limmer W, et al. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN [J]. J. Appl. Phys., 1999, 86(11):6256-6260.[24] Bundesmann C, Rahm A, Lorenz M, et al. Infrared optical properties of MgxZn1-xO thin films (0x 1): Long-wavelength optical phonons and dielectric constants [J]. J. Appl. Phys., 2006, 99(11):113504-1-11.[25] Huang Y, Liu M, Li Z, et al. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process [J]. Mater. Sci. Eng, B, 2003, 97(2):111-116.
0
浏览量
178
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构