浏览全部资源
扫码关注微信
1. 大连理工大学 物理与光电工程学院,辽宁 大连,116024
2. 吉林大学 电子科学与工程学院, 吉林 长春 130012
3. 中国科学院上海微系统与信息技术研究所 信息功能材料国家重点实验室 上海,200050
收稿日期:2013-02-08,
修回日期:2013-04-02,
纸质出版日期:2013-08-10
移动端阅览
宋世巍, 梁红伟, 申人升, 柳阳, 张克雄, 夏晓川, 杜国同. SiN插入层对GaN外延膜应力和光学质量的影响[J]. 发光学报, 2013,34(8): 1017-1021
SONG Shi-wei, LIANG Hong-wei, SHEN Ren-sheng, LIU Yang, ZHANG Ke-xiong, XIA Xiao-chuan, DU Guo-tong. Influence of <em>In-situ</em> SiN<sub><em>x</em></sub> Interlayer on Strain Relief and Optical Character of GaN Epilayer Grown on 6H-SiC[J]. Chinese Journal of Luminescence, 2013,34(8): 1017-1021
宋世巍, 梁红伟, 申人升, 柳阳, 张克雄, 夏晓川, 杜国同. SiN插入层对GaN外延膜应力和光学质量的影响[J]. 发光学报, 2013,34(8): 1017-1021 DOI: 10.3788/fgxb20133408.1017.
SONG Shi-wei, LIANG Hong-wei, SHEN Ren-sheng, LIU Yang, ZHANG Ke-xiong, XIA Xiao-chuan, DU Guo-tong. Influence of <em>In-situ</em> SiN<sub><em>x</em></sub> Interlayer on Strain Relief and Optical Character of GaN Epilayer Grown on 6H-SiC[J]. Chinese Journal of Luminescence, 2013,34(8): 1017-1021 DOI: 10.3788/fgxb20133408.1017.
研究了MOCVD系统中原位SiN插入层对GaN薄膜应力和光学性质的影响。采用SiN插入层后
GaN薄膜的裂纹数量大大减少
薄膜所承受的张应力得到了一定的释放。同时
GaN薄膜的缺陷密度降低一倍
晶体质量得到了极大的改善。研究表明
位错密度的降低在GaN薄膜中留存较大的残余应力
补偿了降温过程中所引入的张应力。同样
随着SiN插入层的应用
低温PL谱的半峰宽降低
薄膜光学质量提高。最后研究了PL谱发光峰与应力的关系
得到了一个-13.8的线性系数。
High quality GaN epilayers have been grown on 6H-SiC substrate by metal organic chemical vapor deposition (MOCVD) using an
in situ
porous SiN
x
interlayer. It was found that the SiN
x
interlayer played a very important role in strain relief and the enhancement of quality of GaN epilayer. Optical microscope studies revealed that the crack line density was reduced to 0.29 mm
-1
. Furthermore
the in-plane stress of 1.5810
-3
was measured by Raman spectra
representing a significant strain relief. The relaxation was assisted by the reduction of dislocation density. Finally
a linear coefficient characterizing the relationship between the band gap and the biaxial stress of the GaN epilayer was obtained.
Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379):956-961. [2] Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaN/InGaN solar cells [J]. Appl. Phys. Lett., 2007, 91(13):132117-1-3. [3] Martens M, Schlegel J, Vogt P, et al. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching [J]. Appl. Phys. Lett., 2011, 98(21):211114-1-3. [4] Ng H M, Doppalapudi D, Moustakas T D, et al. The role of dislocation scattering in n-type GaN films [J]. Appl. Phys. Lett., 1998, 73(6):821-824. [5] Gmeinwieser N, Engl K, Gottfriedsen P, et al. Correlation of strain, wing tilt, dislocation density, and photoluminescence in epitaxial lateral overgrown GaN on SiC substrates [J]. J. Appl. Phys., 2004, 96(7):3666-3672. [6] Ponce F A, Krusor B S, Major J S, et al. Microstructure of GaN epitaxy on SiC using AlN buffer layers [J]. Appl. Phys. Lett., 1995, 67(3):410-412. [7] Fujito K, Kiyomi K, Mochizuki T, et al. High-quality nonpolar m-plane GaN substrates grown by HVPE [J]. Phys. Status Solidi (a), 2008, 205(5):1056-1059. [8] Kappers M J, Datta R, Oliver R A, et al. Threading dislocation reduction in (0001) GaN thin films using SiN</em>x interlayers [J]. J. Crystal Growth, 2007, 300(1):70-74. [9] Fareed R S Q, Yang J W, Zhang J, et al. Vertically faceted lateral overgrowth of GaN on SiC with conducting buffer layers using pulsed metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2000, 77(15):2343-2346. [10] Romano L T, VandeWalle C G, Ager J W, et al. Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition [J]. J. Appl. Phys., 2000, 87(11):7745-7752. [11] Porowski S. Bulk and homoepitaxial GaN-growth and characterization [J]. J. Cryst. Growth, 1998, 189-190:153-158. [12] Ponce F A, Krusor B S, Major J S, et al. Microstructure of GaN epitaxy on SiC using AlN buffer layers [J]. Appl. Phys. Lett., 1995, 67(3):410-412. [13] Perlin P, Jauberthie C C, Itie J P, et al. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure [J]. Phys. Rev. B, 1992, 45(1):83-89. [14] Davydov V Y, Averkiev N S, Goncharuk I N, et al. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC [J]. J. Appl. Phys., 1997, 82(10):5097-5102. [15] Polian A, Grimsdich M, Grzegory I. Elastic constants of gallium nitride [J]. J. Appl. Phys., 1996, 79(6):3343-3344. [16] Taniyasu Y, Kasu M, Makimoto T. Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate [J]. J. Cryst. Growth, 2007, 298:310-315. [17] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination [J]. Appl. Phys. Lett., 2003, 83(13):2569-2571. [18] Takeuchi M, Shimizu H, Kajitani R, et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD [J]. J. Cryst. Growth, 2007, 305(2):360-365. [19] Tanaka S, Takeuchi M, Aoyagi Y. Anti-surfactant in III-nitride epitaxy-quantum dot formation and dislocation termination [J]. Jpn. J. Appl. Phys., 2000, 39:L831-L834. [20] Yang D C, Liang H W, Song S W, et al. Improvement of the quality of a GaN epilayer by employing a SiN</em>x interlayer [J]. Chin. Phys. Lett., 2012, 29(10):088102-1-4. [21] Sun X Y, Bommena R, Burckel D, et al. Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC [J]. J. Appl. Phys., 2004, 95(3):1450-1454.
0
浏览量
91
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构