浏览全部资源
扫码关注微信
1. 盐城工学院 省新型环保重点实验室,江苏 盐城,224051
2. 河南理工大学 材料科学与工程学院,河南 焦作,454000
收稿日期:2013-05-07,
修回日期:2013-06-19,
纸质出版日期:2013-08-10
移动端阅览
关荣锋, 孙倩, 李勤勤, 许宁. CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup>红色荧光粉的共沉淀制备与表征[J]. 发光学报, 2013,34(8): 1000-1005
GUANG Rong-feng, SUN Qian, LI Qin-qin, XU Ning. Co-precipitation Synthesis and Characterization of CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup> Red Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 1000-1005
关荣锋, 孙倩, 李勤勤, 许宁. CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup>红色荧光粉的共沉淀制备与表征[J]. 发光学报, 2013,34(8): 1000-1005 DOI: 10.3788/fgxb20133408.1000.
GUANG Rong-feng, SUN Qian, LI Qin-qin, XU Ning. Co-precipitation Synthesis and Characterization of CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup> Red Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 1000-1005 DOI: 10.3788/fgxb20133408.1000.
采用共沉淀法合成了红色荧光粉Ca
0.75
MoO
4
:Eu
0.25
3+
、Ca
0.75
MoO
4
:Eu
0.25-
x
3+
Bi
x
3+
及Ca
0.5
MoO
4
:Eu
0.25-2
x
3+
Bi
x
3+
Li
0.25+
x
+
并采用X射线衍射(XRD)、拉曼光谱
扫描电镜(SEM)和荧光光谱(PL)测定分析了其结构形貌特征及发光性能。结果表明:制备的CaMoO
4
:Eu
3+
Bi
3+
Li
+
红色荧光粉为白钨矿结构
颗粒尺寸约为0.5~1 m。掺杂Bi
3+
的Ca
0.75
MoO
4
:Eu
0.25-
x
3+
Bi
x
3+
的相对发光强度明显高于未掺Bi
3+
的Ca
0.75
MoO
4
:Eu
0.25
3+
荧光粉。Bi
3+
离子的掺杂将吸收来的能量传递给激活离子Eu
3+
起到了能量传递的作用。当Bi
3+
掺杂量为
x
=0.005时
在395 nm激发下
主发射峰在616 nm处的相对发光强度最大
但掺杂浓度过高时会出现浓度猝灭现象。另外
电荷补偿剂的掺入能够解决材料中因同晶取代引起的电荷不平衡的问题
以Li
+
作电荷补偿剂、Eu
3+
和 Bi
3+
共掺合成的Ca
0.5
MoO
4
:Eu
3+
0.23
Bi
0.01
3+
Li
+
0.26
红色荧光粉的发光性能强于Ca
0.75
MoO
4
:Eu
0.25
3+
、Ca
0.5
MoO
4
:Eu
0.25
3+
Li
0.25
+
及Ca
0.75
MoO
4
:Eu
0.24
3+
Bi
0.01
3+
。
Ca
0.75
MoO
4
:Eu
0.25
3+
Ca
0.75
MoO
4
:Eu
0.25-
x
3+
Bi
x
3+
and Ca
0.5
MoO
4
:Eu
0.25-2
x
3+
Bi
x
3+
Li
0.25+
x
+
were synthesized by co-precipitation method. The crystal structure
morphology and luminescent properties were measured and studied in detail by X-ray diffraction (XRD)
scanning electron microscope (SEM)
Raman spectrum
and photoluminescence spectrophotometer (PL). The synthesized red phosphors of CaMoO
4
:Eu
3+
Bi
3+
Li
+
are scheelite structure
and the particle sizes are about 0.5~1 m. The relative luminous intensity of Ca
0.75
MoO
4
:Eu
0.25-
x
3+
Bi
x
3+
is significantly higher than Ca
0.75
MoO
4
:Eu
0.25
3+
because Bi
3+
ions transmit the absorbed energy to Eu
3+
ions. When the doping mole fraction of Bi
3+
is 0.005
the relative luminous intensity of 616 nm main emission peak is the largest under the excitation of 395 nm. However
the phenomenon of concentration quenching occurs when Bi
3+
doping concentration is higher. In addition
the incorporation of charge compensation can solve the problem of charge imbalance caused by the isomorphous substitution. It is shown that the luminescence property of Ca
0.5
MoO
4
:Eu
3+
0.23
Bi
0.01
3+
Li
+
0.26
is significantly higher than Ca
0.75
MoO
4
:Eu
0.25
3+
Ca
0.5
MoO
4
:Eu
0.25
3+
Li
0.25
+
and Ca
0.75
MoO
4
:Eu
0.24
3+
Bi
0.01
3+
red phosphors.
Yen W M, Shionoya S, Yamamoto H. Phosphor Handbook [M]. Boca Raton: CRC Press, 1996.[2] Kitai A. Luminescent Materials and Application [M]. New Jersey: Wiley, 2008.[3] Zhang M L, Wu C T, Lin K L, et al. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si(M=Zn, Mg) silicate bioceramics [J]. J. Biomed. Mater. Res. A, 2012, 100A:2979-2990.[4] Li Z, Huang W. Three-dimensional flower-like Sr2MgSi2O7:Eu2+ blue phosphor and its luminescene properties [J]. Funct. Mater.(功能材料), 2002, 18(43):2550-2553 (in Chinese).[5] Ji H M, Xie G J, Lv Y, et al. A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow materials by sol-gel method [J]. J. Sol-Gel. Sci. Technol., 2007, 44(2):133-137.[6] Xu Y C, Chen D H. Combustion synthesis and photoluminescence of Sr2MgSi2O7:Eu2+,Dy3+ long lasting phosphor nanoparticles [J]. Ceram. Int., 2008, 34(8):2117-2120.[7] Zhai Y, You Z, Wang X, et al. Effects of charge compensators on structure and luminescent properties of Sr2MgSi2O7:Eu3+ red-light-emitting phosphors [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2011, 39(12):1877-1891 (in Chinese).[8] Tan X H. Fabrication and properties of Sr2MgSi2O7:Eu2+,Dy3+ nanostructures by an AAO template assisted co-deposition method [J]. J. Alloys Compd., 2009, 477(1-2):648-651.[9] Chen X, Li Y, Ai P, et al. Synthesis of blue long-lasting phosphorescent material Sr2MgSi2O7:Eu2+,Dy3+ by coprecipitation method [J]. Chin. J. Inorg. Chem.(无机化学学报), 2010, 26(1):79-83 (in Chinese).[10] Wu Q. Co-pricipitation-hydrothermal synthesis of stabilized Y-Ce-ZrO2 nano-powder [J]. J. Mater. Sci. Eng.(材料科学与工程学报), 2009, 22(4):519-522 (in Chinese).[11] Xia Z, Sun J, Li G, et al. Synthesis and analysis of novel solid state lighting compound Ca3SiO4Br2:Eu2+ [J]. Chin. J. Lumin.(发光学报), 2011, 32(10):988-992 (in Chinese).[12] Aitasalo T, Deren P, Hls J, et al. Persistent luminescence phenomena in materials doped with rare earth ions [J]. J. Solid State Chem., 2003, 171(1):114-122.[13] Liu Y, Lei B, Shi C. Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+ [J]. Chem. Mater., 2005, 17(8):2108-2113.[14] Yang H C, Li C Y, Tao Y, et al. The luminescence of CaYBO4:RE3+ (RE= Eu, Gd, Tb, Ce) in VUV-visible region [J]. J. Lumin., 2007, 126(1):196-202.[15] Su Q, Liang H B, Li C Y, et al. Luminescent materials and spectroscopic properties of Dy3+ ion [J]. J. Lumin., 2007, 122-123:927-930.[16] Li K Y, Xue D F. A new set of electronegativity scale for trivalent lanthanides [J]. Phys. Status Solidi (b), 2007, 244:1982-1987.[17] Huang P, Yang F, Cui C, et al. Effect of doping ions on properties of the white-light long-lasting phosphor Y2O2S:Tb3+, Eu3+, M2+(M=Mg, Ca, Sr, Ba), Zr4+ [J]. Chin. J. Lumin.(发光学报), 2013, 34(3):262-267 (in Chinese).[18] Lu X, Xiao Z, Zhang X, et al. Eu, Dy co-doped long-lasting luminescence glass [J]. Chin. J. Lumin.(发光学报), 2005, 26(6):819-822 (in Chinese).[19] Qin J, Lei B, Li J, et al. Temperature-dependent long-lasting phosphorescence in SrSi2O2N2:Eu2+ [J]. ECS J. Solid State Sci. Technol., 2013, 2(3):R60-R64.[20] Li J, Lei B, Qin J, et al. Temperature-dependent emission spectra of Ca2Si5N8:Eu2+,Tm3+ phosphor and its afterglow properties [J]. J. Am. Ceram. Soc., 2013, 96(3):873-878.
0
浏览量
91
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构