浏览全部资源
扫码关注微信
沈阳化工大学 材料科学与工程学院,辽宁 沈阳,110142
收稿日期:2013-05-09,
修回日期:2013-05-28,
纸质出版日期:2013-08-10
移动端阅览
李艳红, 臧国凤, 马晶, 刘宇田. 稀土掺杂的NaGdF<sub>4</sub>上转换发光材料的合成与发光特性研究[J]. 发光学报, 2013,34(8): 982-987
LI Yan-hong, ZANG Guo-feng, MA Jing, LIU Yu-tian. Synthesis and Luminescence Properties of Rare Earth Doped NaGdF<sub>4</sub> Upconversion Phosphors[J]. Chinese Journal of Luminescence, 2013,34(8): 982-987
李艳红, 臧国凤, 马晶, 刘宇田. 稀土掺杂的NaGdF<sub>4</sub>上转换发光材料的合成与发光特性研究[J]. 发光学报, 2013,34(8): 982-987 DOI: 10.3788/fgxb20133408.0982.
LI Yan-hong, ZANG Guo-feng, MA Jing, LIU Yu-tian. Synthesis and Luminescence Properties of Rare Earth Doped NaGdF<sub>4</sub> Upconversion Phosphors[J]. Chinese Journal of Luminescence, 2013,34(8): 982-987 DOI: 10.3788/fgxb20133408.0982.
采用水热法制备了一系列不同掺杂浓度的NaGdF
4
:
Re(Re
=Tm
3+
Er
3+
Yb
3+
)上转换发光粉。通过X射线衍射(XRD)、电子扫描电镜(SEM)和上转换发射光谱对样品进行了表征。XRD研究结果表明:合成的样品均为六方结构NaGdF
4
。估算的平均晶粒尺寸为41~43 nm。在980 nm红外光激发下
Er
3+
和Yb
3+
共掺杂的NaGdF
4
发光粉发出分别来自于Er
3+
离子
2
H
11/ 2
4
S
3/2
4
I
15/2
跃迁的绿光和
4
F
9/2
4
I
15/2
跃迁的红光发射
Tm
3+
和Yb
3+
共掺杂的NaGdF
4
发光粉发出分别来自Tm
3+
离子的
1
G
4
3
H
6
跃迁的蓝光、
1
G
4
3
F
4
和
3
F
2
3
3
H
6
跃迁的红光和
3
H
4
3
H
6
跃迁的近红外光发射。Er
3+
Tm
3+
和Yb
3+
共掺杂的NaGdF
4
发光粉的发光强度及红、绿、蓝光发射的相对强度受Yb
3+
离子掺杂浓度的影响。对样品中可能的上转换发光机制进行了讨论。计算的色坐标显示:可通过改变掺杂离子浓度对上转换发光的颜色进行调控。
A series of NaGdF
4
:
Re(Re
=Tm
3+
Er
3+
Yb
3+
) upconversion luminescence phosphors with various doping concentrations were prepared by a hydrothermal method. X-ray diffraction (XRD)
field emission scanning electron microscope (SEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that all the samples are hexagonal phase NaGdF
4
. The average crystallite sizes are estimated to be 41~43 nm. Under 980 nm laser excitation
the Er
3+
and Yb
3+
codoped NaGdF
4
phosphors show green emission from
2
H
11/ 2
4
I
15/2
and
4
S
3/2
4
I
15/2
transitions of Er
3+
ions
the red emissions attributed to
4
F
9/2
4
I
15/2
transitions of Er
3+
ions
respectively. The Tm
3+
and Yb
3+
codoped NaGdF
4
phosphors show blue emission from
1
G
4
3
H
6
transitions of Tm
3+
ions
red emission assigned to
1
G
4
3
F
4
and
3
F
2
3
3
H
6
transitions of Tm
3+
ions
near-infrared corresponding to the
3
H
4
3
H
6
transitions of Tm
3+
ions
respectively. The upconversion luminescence intensity and a relative intensity of red
green and blue emission are governed by the doping Yb
3+
concentrations in Er
3+
Tm
3+
and Yb
3+
tridoped NaGdF
4
phosphors. The possible upconversion luminescence mechanisms of the samples are discussed. The calculated CIE color coordinates display that the upconversion luminescence color can be tuned by varying the doping ions concentration.
Zheng K Z, Zhang D S, Zhao D, et al. Bright white upconversion emission from Yb3+, Er3+, and Tm3+-codoped Gd2O3 nanotubes [J]. Phys. Chem. Chem. Phys., 2010, 12(27):7620-7625.[2] Cao Y L. Applications of infrared up-conversion materials in anti-counterfeiting technology [J]. Laser & Infrared (红外与激光), 2001, 31(3):190-191 (in Chinese).[3] Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+/Er3+- codoped oxyfluoride glass ceramics [J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese).[4] Yang F Z, Yi G S, Chen D P, et al. Synthesis and up-conversion luminescence properties of nanocrystal Yb, Ho co-doped sodium yttrium fluoride [J]. Chem. J. Chin. Univ.(高等学校化学学报), 2004, 25(9):1589-1592 (in Chinese).[5] Xing M M, Cao W H, Fu Y, et al. Synthesis of Y2O3:Yb,Er nanocrystals by complex precipitation method and its up-conversion luminescence properties [J]. J. Funct. Mater.(功能材料), 2006, 37(9):1375-1377 (in Chinese).[6] Mahalingam V, Mangiarini F, Vetrone F, et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals [J]. J. Phys. Chem. C, 2008, 112(46):17745-17749.[7] Wang D G, Zhou Y X, Wang X S, et al. Upconversion luminescence of Tm3+ /Ho3+ /Yb3+ codoped tellurite glass used for white light emission [J]. Acta Phys. Sinica (物理学报), 2010, 59(9):6256-6260 (in Chinese).[8] Luo X X, Cao W H. Blue, green, red upconversion luminescence and optical characteristics of rare earth doped rare earth oxide and oxysulfide [J]. Science China (Series B: Chemistry), 2007, 37(2):148-155.[9] Tan M C, Al-Baroudi L, Riman R E. Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4:Yb-Er [J]. ACS Appl. Mater. Interf., 2011, 3(10):3910-3915.[10] Zhang C M, Ma P A, Li C X, et al. Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln=Yb, Er, Tm) nanocrystals [J]. J. Mater. Chem., 2011, 21(3):717-723.[11] Sivakumar S, Van Veggel F C J M, Raudsepp M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles [J]. J. Am. Chem. Soc., 2005, 127(36):12464-12465.[12] Liang L F, Zhuang J L, Wu H, et al. White up-conversion emission of hydrothermally synthesized hexagonal NaYbF4:Er3+ /Tm3+ [J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese).[13] Wang G F, Qin W P, Xu Y, et al. Size-dependent upconversion luminescence in YF3:Yb3+/Tm3+ nanobundles [J]. J. Fluorine Chem., 2008, 129(11):1110-1113.[14] Wu Y, Li C X, Yang D M, et al. Rare earth -NaGdF4 fluorides with multiform morphologies: Hydrothermal synthesis and luminescent properties [J]. J. Colloid Interf. Sci., 2011, 354(2):429-436.[15] Cao C Y, Qin W P, Zhang J S. Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4 [J]. Opt. Commun., 2010, 283(4):547-550.[16] Xin F X, Zhao S L, Huang L H, et al. Up-conversion luminescence of Er3+-doped glass ceramics containing -NaGdF4 nanocrystals for silicon solar cells [J]. Mater. Lett., 2012, 78(30th Anniversary Special Issue):75-77.[17] Degejihu, Menggenlabuqi, Si Q. Bright white light through up-conversion of a single NIR source from -NaGd0.794Yb0.200-Ho0.001Tm0.005F4 nanoparticles [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):737-742 (in Chinese).[18] Li Y H, Hong G Y, Zhang Y M, et al. Red and green upconversion luminescence of Gd2O3:Er3+,Yb3+ nanoparticles [J]. J. Alloys Compd., 2008, 456(1-2):247-250.
0
浏览量
106
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构