浏览全部资源
扫码关注微信
1. 天津理工大学 材料物理研究所 天津,300384
2. 天津理工大学 天津光电材料与器件重点实验室 天津,300384
3. 显示材料与光电器件教育部重点实验室 天津理工大学 天津,300384
收稿日期:2013-04-16,
修回日期:2013-06-10,
纸质出版日期:2013-08-10
移动端阅览
王龄昌, 陆启飞, 李建, 王达健. 微波场对(Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup>荧光粉中Mn<sup>2+</sup> 660 nm红光能量传递的影响[J]. 发光学报, 2013,34(8): 976-981
WANG Ling-chang, LU Qi-fei, LI Jian, WANG Da-jian. Effect of Microwave on Energy Transfer of Mn<sup>2+</sup> 660 nm-emitting in (Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 976-981
王龄昌, 陆启飞, 李建, 王达健. 微波场对(Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup>荧光粉中Mn<sup>2+</sup> 660 nm红光能量传递的影响[J]. 发光学报, 2013,34(8): 976-981 DOI: 10.3788/fgxb20133408.0976.
WANG Ling-chang, LU Qi-fei, LI Jian, WANG Da-jian. Effect of Microwave on Energy Transfer of Mn<sup>2+</sup> 660 nm-emitting in (Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 976-981 DOI: 10.3788/fgxb20133408.0976.
研究了2.45 GHz微波灼烧(Ba
Sr)
3
MgSi
2
O
8
:Eu
2+
Mn
2+
荧光粉的非热效应对Mn
2+
离子660 nm红光发射强度的影响。在相同的加热温度条件下
增加微波场的输出功率
微波非热效应导致Eu
2+
离子蓝光的跃迁概率增加
Eu
2+
通过(Ba
Sr)
3
MgSi
2
O
8
基质晶格把能量传递给Mn
2+
进而使Mn
2+
的跃迁概率增加
导致红光发射增强。提出了一种微波场非热效应对能量传递影响的新观点
认为在微波加热过程中强微波磁场可能会对像Mn
2+
这样具有顺磁性的激活剂离子的能级结构和能量传递性质产生干扰作用。
(Ba
Sr)
3
MgSi
2
O
8
:Eu
2+
Mn
2+
phosphor was synthesized by using 2.45 GHz high temperature microwave (MW) at a given firing temperature. The microwave non-thermal effect on the photoluminescence intensity of 660 nm emission was investigated. With an increase of MW power supply to reach an identical holding firing temperature
non-thermal MW effect leads to increasing transition probability of Eu
2+
blue emission and indirect transition probability of Mn
2+
red band emission with aid of energy transfer from Eu
2+
via
(Ba
Sr)
3
MgSi
2
O
8
host lattice. A modified energy level diagram was proposed to address this disturbing issue of MW energy attribute. This non-thermal MW effect suggests that a strong magnetic field may apply a disturbance effect on the structure and transition properties of the paramagnetic ions like Mn activator in microwave firing procedure.
Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726):1274-1278.[2] Ma L, Wang D J, Mao Z Y, et al. Investigation of Eu-Mn energy transfer in A3MgSi2O8:Eu2+,Mn2+ (A=Ca, Sr, Ba) for light-emitting diodes for plant cultivation [J]. Appl. Phys. Lett., 2008, 93(14):144101-1-3.[3] Emerson R, Chalmers R, Cederstrand C. Some factors influencing the long-wave limit of photosynthesis [J]. Proc. Natl. Acad. Sci. USA, 1957, 43(1):133-143.[4] Maranowski S A, Camras M D, Chen C, et al. High-performance AlGaInP light-emitting diodes [J]. SPIE, 1997, 3002:110-118.[5] Wang X J, Jia D D, Yen W M. Mn2+ activated green, yellow, and red long persistent phosphors [J]. J. Lumin., 2003, 102:34-37.[6] Lei B F, Liu Y L, Ye Z, et al.Luminescence properties of CdSiO3:Mn2+ phosphor [J]. J. Lumin., 2004, 109(3-4):215-219.[7] Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett., 2004, 85(17):3696-3698.[8] Duan C J, Delsing A C A, Hintzen H T. Photoluminescence properties of novel red-emitting Mn2+-ativated MZnOS(M=Ca, Ba) phosphors [J]. Chem. Mater., 2009, 21(6):1010-1016.[9] Chakradhar R P S, Nagabhushana B M, Chandrappa G T, et al. Solution combustion derived nanocrystalline Zn2SiO4:Mn phosphors: A spectroscopic view [J]. J. Chem. Phys., 2004, 121(20):10250-10259.[10] Lee D Y, Kang Y C, Park H D, et al. VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis [J]. J. Alloys Compd., 2003, 353(1-2):252-256.[11] Hattori Y, Isobe T, Takahashi H, et al. Luminescent properties of ZnS:Mn2+ nanocrystals/SiO2 hybrid phosphor synthesized by in situ surface modification co-precipitation [J]. J. Lumin., 2005, 113(1-2):69-78.[12] Agrawal D. Latest global developments in microwave materials processing [J]. Mater. Res. Innov., 2010, 14(1):3-8.[13] Blasse G, wanmaker W L. Fluorescence of Eu2+ activated silicates [J]. Philips Res. Repts, 1968, 23:189-200.[14] Yonesaki Y, Takei T, Kumada N, et al. Crystal structure of Eu2+-doped M3MgSi2O2 (M:Ba, Sr, Ca) compounds and their emission properties [J]. J. Solid State Chem., 2009, 182(3):547-554.[15] Park C H, Hong S T, Keszler D A. Superstructure of a phosphor material Ba3MgSi2O8 determined by neutron diffraction data [J]. J. Solid State Chem., 2009, 182(3):496-501.[16] Im W B, Kim Y I, Yoo H S, et al. Luminescent and structural properties of (Sr1-x,Bax)3MgSi2O8: Eu2+: Effects of Ba content on the Eu2+ site preference for thermal stability [J]. Inorg. Chem., 2009, 48(2):557-564.[17] Yonesaki Y, Takei T, Kumada N, et al. Crystal structure of BaCa2MgSi2O8 and the photoluminescent properties activated by Eu2+ [J]. J. Lumin., 2008, 128(9):1507-1514.[18] Aitasalo T, Hietikko A, Holsa J, et al. Crystal structure of the Ba3MgSi2O8:Mn2+,Eu2+ phosphor for white light emitting diodes [J]. Zeitschrift fr Kristallographie, 2007, 26(z1):461-466.[19] Ma L, Wang D J, Zhang H M, et al. The origin of 505 nm-peaked photoluminescence from Ba3MgSi2O8:Eu2+,Mn2+ phosphor for white-light-emitting diodes [J]. Electrochem. Solid-State Lett., 2008, 11(2):E1-E4.[20] Lu Q F, Li J, Wang D J. Cage-like phosphor spheres of Eu2+ and Mn2+ codoped Ba3MgSi2O8: Emission enhancement for artificial photosynthetic spectrum [J]. ECS Solid State Lett., 2012, 1(5):R24-R26.[21] Cai Y, Lu Q F, Qiu K, et al. Intensification of the photosynthetic action spectrum of Ba3MgSi2O8:Eu2+,Mn2+ phosphor with metal-enhanced fluorescence [J]. Electrochem. Solid-State Lett., 2012, 15(2):1-4.[22] Li J, Lu Q F, Wang D J. Single-phased silicate-hosted phosphor with 660 nm-featured band emission for biological light-emitting diodes [J]. Curr. Appl. Phys., 2013, available online.[23] Barry T L. Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8 [J]. J. Electrochem. Soc.: Solid State Sci., 1968, 115:733-738.[24] Okamoto S, Nanba Y, Honma T, et al. Ba-substitution effect on luminescent properties and thermal degradation of Sr3MgSi2O8:Eu2+ blue phosphor under vacuum-UV-light exciation [J]. Electrochem. Solid-State Lett., 2008, 11(1):147-149.[25] Booske J H. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids [J]. J. Mater. Res., 1992, 7(2):495-501.
0
浏览量
46
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构