浏览全部资源
扫码关注微信
1. 广州有色金属研究院 稀有金属研究所,广东 广州,510650
2. 中山大学 化学与化学工程学院, 广东 广州 510275
收稿日期:2013-05-01,
修回日期:2013-05-31,
纸质出版日期:2013-08-10
移动端阅览
倪海勇, 梁宏斌, 王灵利, 张秋红. Na<sub>3</sub>GdSi<sub>2</sub>O<sub>7</sub>:Tb<sup>3+</sup>荧光粉发光特性及Gd<sup>3+</sup>&rarr;Tb<sup>3+</sup>之间的能量传递[J]. 发光学报, 2013,34(8): 970-975
NI Hai-yong, LIANG Hong-bin, WANG Ling-li, ZHANG Qiu-hong. Luminescent Properties of Phosphor Na<sub>3</sub>GdSi<sub>2</sub>O<sub>7</sub>:Tb<sup>3+</sup> and Gd<sup>3+</sup>&rarr;Tb<sup>3+</sup> Energy Transfer[J]. Chinese Journal of Luminescence, 2013,34(8): 970-975
倪海勇, 梁宏斌, 王灵利, 张秋红. Na<sub>3</sub>GdSi<sub>2</sub>O<sub>7</sub>:Tb<sup>3+</sup>荧光粉发光特性及Gd<sup>3+</sup>&rarr;Tb<sup>3+</sup>之间的能量传递[J]. 发光学报, 2013,34(8): 970-975 DOI: 10.3788/fgxb20133408.0970.
NI Hai-yong, LIANG Hong-bin, WANG Ling-li, ZHANG Qiu-hong. Luminescent Properties of Phosphor Na<sub>3</sub>GdSi<sub>2</sub>O<sub>7</sub>:Tb<sup>3+</sup> and Gd<sup>3+</sup>&rarr;Tb<sup>3+</sup> Energy Transfer[J]. Chinese Journal of Luminescence, 2013,34(8): 970-975 DOI: 10.3788/fgxb20133408.0970.
采用高温固相法合成了Na
3
Gd
1-
x
Tb
x
Si
2
O
7
(
x
=0.01
0.02
0.04
0.06
0.08
0.1)系列荧光粉。研究了荧光粉的真空紫外-可见发光光谱和荧光寿命
讨论了Tb
3+
在扭曲八面体结构(标示为Gd(1)
3+
)和正三棱柱构型(标示为Gd(2)
3+
)两种格位中的最低5d轨道能级。同时研究了Gd
3+
Tb
3+
之间无辐射能量传递速率
K
和无辐射能量传递效率
。研究结果表明:Tb
3+
在Gd(1)
3+
格位中的最低允许跃迁和禁戒跃迁的5d轨道能级分别位于235 nm和280 nm
在Gd(2)
3+
格位中的最低允许跃迁和禁戒跃迁的5d轨道能级分别位于224 nm和256 nm。随着Tb
3+
浓度的增加
能量传递效率及速率显著增大
说明在Na
3
Gd
1-
x
Tb
x
Si
2
O
7
中存在有效的Gd
3+
-Tb
3+
能量传递。
Tb
3+
doped sodium gadolinium pyrosilicate phosphors Na
3
Gd
1-
x
Tb
x
Si
2
O
7
were prepared using a high-temperature solid-state reaction technique. The spectroscopic properties of Na
3
Gd
1-
x
-Tb
x
Si
2
O
7
in VUV-UV-Vis range and fluorescent lifetimes were investigated. The lowest 5d orbitals of Tb
3+
in two sites both 6-fold distorted octahedron coordination (trigonal antiprism tap) (Gd
3+
(1)) and 6-fold regular trigonal prism coordination (tp) (Gd
3+
(2)) were discussed. The lowest 5d orbitals of Tb
3+
in Gd
3+
(1) is 235 nm for allowed transition
and 280 nm for forbidden transition. The lowest 5d orbitals of Tb
3+
in Gd
3+
(2) is 224 nm for allowed transition
and 256 nm for forbidden transition. The nonradiative energy-transfer rate
K
and energy-transfer efficiency
were also investigated. The results show that there is efficient Gd
3+
-Tb
3+
energy-transfer in Na
3
Gd
1-
x
Tb
x
Si
2
O
7
for
K
and
increasing with the increasing of Tb
3+
concentration.
Wang Y H, Guo X, Endo T, et al. Identification of charge transfer (CT) transition in (Gd,Y)BO3:Eu phosphor under 100~300 nm [J]. J. Solid State Chem., 2004, 77(7):2242-2248.[2] Xia Z L, Liang Y J, Huang W Z, et al. Synthesis and photoluminescence properties of a novel green-emitting phosphor (Ce0.67Tb0.33)MgAl11O19:Mn2+ [J]. Chin. J. Lumin.(发光学报), 2013, 34(2):144-148 (in Chinese).[3] Lenggoro W, Xia B, Mizushima H, et al. Synthesis of LaPO4:Ce,Tb phosphor particles by spray pyrolysis [J]. Mater. Lett., 2001, 50(2-3):92-96.[4] Sohn K S, Choi Y Y, Park H D. Photoluminescence behavior of Tb3+-activated YBO3 phosphors [J]. J. Electrochem. Soc., 2000, 147(5):1988-1992.[5] Tian Z F, Liang H B, Han B, et al. Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4 [J]. J. Phys. Chem. C, 2008, 112(32):12524-12529.[6] Ni H Y, Liang H B, Liu C M, et al. Luminescence of Eu3+ in two different sites of Na3GdSi2O7 and Gd3+-Eu3+ energy transfer [J]. J. Solid State Sci. Technol., 2012, 1(1):R27-R31.[7] Ni H Y, Liang H B, Xie M B, et al. Temperature sensitive luminescence of Ce3+ in two different sites of Na3LuSi2O7 [J]. J. Electrochem. Soc., 2012, 159(3):J43-J47.[8] Abe E A, Kahlenberg V. Structural investigations on the fertilizer component K2Ca2Si2O7 [J]. Eur. J. Mineral, 2011, 23(1):101-107.[9] Tamazyan R A, Malinovskii Y A, Sirota M I, et al. Crystal structure and twinning in sodium lutetium silicate Na3Lu(Si2O7) [J]. Sov. Phys. Crystallogr., 1998, 33:668-672.[10] Ni H Y, Liang H B, Liu C M, et al. Luminescence of Ce3+ ion activated sodium gadoliniumpyrosilicates phosphor under vacuum ultraviolet-vis excitation [J]. Chin. Rare Earth. Soc.(中国稀土学报), 2013, 31(1):38-43 (in Chinese).[11] Tao Y, Huang Y, Gao Z H, et al. Developing VUV spectroscopy for protein folding and material luminescence on beamline 4B8 at the Beijing synchrotron radiation facility [J]. J. Synchrotron Rad., 2009, 16(1):857-863.[12] Chen F, Yuan X M, Xie A, et al. Preparation and luminescent properties of Sr3(PO4)2:Tb3+,Li+ phosphor for white LED [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(4):448-454 (in Chinese).[13] Dorenbos P. The 5d level position of the trivalent lanthanides in inorganic compounds [J]. J. Lumin., 2000, 91(3-4):155-176.[14] Dorenbos P. 5d level energies of Ce3+ and the crystalline environment. Ⅰ: Fluoride compounds [J]. Phys. Rev. B, 2001, 62(23):15640-15649.[15] Dorenbos P. Calculation of the energy of the 5d barycenter of La3F3:Ce3+ [J]. J. Lumin., 2003, 105(2-4):117-119.[16] Lin H H, Zhang G B, Liang H B. Luminescence of Ce3+,Tb3+ activated BaCa2(BO3)2 under vacuum ultraviolet excitation [J]. Chin. J. Lumin.(发光学报), 2013, 34(3):276-281 (in Chinese).[17] Zhong J P, Liang H B, Lin H H, et al. VUV optical properties of Ce3+ doped NaLn(PO3)4(Ln=La,Gd) [J]. Chin. Rare Earth. Soc.(中国稀土学报), 2008, 26(2):225-228 (in Chinese).[18] Huang C H, Chen T M. Ca9La(PO4)7:Eu2+,Mn2+: An emission-tunable phosphor through efficient energy transfer for white light-emitting diodes [J]. Opt. Exp., 2010, 18(5):5089-5099.
0
浏览量
37
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构