浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
收稿日期:2013-05-20,
修回日期:2013-06-08,
纸质出版日期:2013-08-10
移动端阅览
林剑, 郝振东, 张霞, 张家骅. Ca<sub>2</sub>SiO<sub>4</sub>:Ce<sup>3+</sup>,Sm<sup>3+</sup>的发光性质及其能量传递机制[J]. 发光学报, 2013,34(8): 953-958
LIN Jian, HAO Zhen-dong, ZHANG Xia, ZHANG Jia-hua. Photoluminescence and Energy Transfer Properties of Ca<sub>2</sub>SiO<sub>4</sub>:Ce<sup>3+</sup>,Sm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2013,34(8): 953-958
林剑, 郝振东, 张霞, 张家骅. Ca<sub>2</sub>SiO<sub>4</sub>:Ce<sup>3+</sup>,Sm<sup>3+</sup>的发光性质及其能量传递机制[J]. 发光学报, 2013,34(8): 953-958 DOI: 10.3788/fgxb20133408.0953.
LIN Jian, HAO Zhen-dong, ZHANG Xia, ZHANG Jia-hua. Photoluminescence and Energy Transfer Properties of Ca<sub>2</sub>SiO<sub>4</sub>:Ce<sup>3+</sup>,Sm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2013,34(8): 953-958 DOI: 10.3788/fgxb20133408.0953.
采用高温固相法在弱还原气氛下合成了一系列Ca
2
SiO
4
:Ce
3+
Sm
3+
Li
+
荧光粉
研究了该荧光粉的发光性质以及能量传递机制。当Ce
3+
摩尔分数固定在1%时
Sm
3+
掺杂摩尔分数为2%时样品的红光发射最强。在360 nm激发下
可以证明从Ce
3+
到Sm
3+
存在有效的能量传递。能量传递效率最高可达55.8%。 运用Inokuti-Hirayama模型对Ce
3+
-Sm
3+
能量传递类型进行分析
结果表明该能量传递类型为偶极子-偶极子相互作用。能量传递的临界距离经计算为0.55 nm。
A series of Ca
2
SiO
4
:0.01Ce
3+
x
Sm
3+
(0.01+
x
)Li
+
(
x
=0~0.05) phosphors were synthesized under a weak reducing atmosphere by traditional solid state reactions. Photoluminescence and energy transfer (ET) properties were investigated in detail. When the mole fraction of Ce
3+
was fixed at 1%
the sample of Ca
2
SiO
4
:0.01Ce
3+
0.02Sm
3+
0.03Li
+
shows the highest red light emitting. Under 360 nm UV excitation
efficient Ce
3+
to Sm
3+
energy transfer was observed. The highest ET efficiency of Ce
3+
-Sm
3+
is 55.8%. Based on Inokuti-Hirayama formula
the ET type of Ce
3+
to Sm
3+
was supposed to be dipole-dipole interaction. The critical distance of Ce
3+
to Sm
3+
was calculated to be about 0.55 nm.
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64(13):1687-1689.[2] Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science, 2005, 308:1274-1278.[3] Zhang J H, Lyu W, Hao Z D, et al. Color-tunable white-light emitting BaMg2Al6Si9O30:Eu2+,Tb3+,Mn2+ phosphors via energy transfer [J]. Chin. Opt.(中国光学), 2012, 5(3):203-208 (in Chinese).[4] Wang L, Zhang X, Hao Z D, et al. Interionic energy transfer in Y3Al5O12:Ce3+,Pr3+ phosphor [J]. J. Appl. Phys., 2010, 108(9):093515-1-10.[5] Uchida Y, Taguchi T. Lighting theory and luminous characteristics of white light-emitting diodes [J]. Opt. Eng., 2005, 44(12):124003-1-9.[6] Xu X H, Wang Y H, Yu X, et al. Investigation of Ce-Mn energy transfer in SrAl2O4:Ce3+,Mn2+ [J]. J. Am. Ceram. Soc., 2011, 94(1):160-163.[7] Chen L, Luo A, Zhang Y, et al. Optimization of the single-phased white phosphor of Li2SrSiO4:Eu2+,Ce3+ for light-emitting diodes by using the combinatorial approach assisted with the taguchi method [J]. Comb.Sci., 2012, 14:636-644.[8] Jang H S, Im W B, Lee D C. et al. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs [J]. J. Lumin., 2007, 126:371-377.[9] Kim J S, Park Y H, Kim S M, et al. Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J]. Solid State Commun., 2005, 133:455-488.[10] Hiramatsu R, Ishida K, Fukuda Y, et al. Tb3+ luminescence by energy transfer from Eu2+ in (Sr,Ba)2SiO4 phosphor [J]. J. Appl. Phys., 2009, 106(9):093513-1-7.[11] Lakshminarasimhan N, Varadaraju U V. White-light generation in Sr2SiO4:Eu2+,Ce3+ under near-UV excitation [J]. J. Electrochem. Soc., 2005, 152(9):152-156.[12] Yu Q M, Liu Y F, Wu S, et al. Luminescent properties of Ca2SiO4:Eu3+ red phosphor for trichiromatic white light emitting diodes [J]. J. Rare Earths, 2008, 26(6):783-786.[13] Li P L, Zhang Z C, Zhang K, et al. Effect of charge compensation on emission spectrum of Ca2SiO4:Dy3+ phosphor [J]. Chin. Opt. Lett., 2008, 6(4):274-275.[14] Yamnova N A, Zubkova N V, Eremin N N, et al. Crystal structure of larnite -Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate [J]. Crystallography Reports, 2011, 56(2):235-245.[15] Duan C J, Zhang Z J, Rsler S, et al. Preparation, characterization, and photoluminescence properties of Tb3+-, Ce3+-, and Ce3+/Tb3+-activated RE2Si4N6C (RE=Lu, Y, and Gd) phosphors [J]. Chem. Mater., 2011, 23(7):1851-1861.[16] Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1978, 43(6):1978-1989.[17] Dexter D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21(5):836-850.
0
浏览量
119
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构