浏览全部资源
扫码关注微信
南京信息大学物理与光电工程学院, 江苏 南京 210044
收稿日期:2013-04-14,
修回日期:2013-05-22,
纸质出版日期:2013-07-10
移动端阅览
郑改革, 詹煜, 曹焜, 徐林华. 亚波长金属光栅结构的制备与矢量衍射理论分析[J]. 发光学报, 2013,34(7): 935-939
ZHENG Gai-ge, ZHAN Yu, CAO Kun, XU Lin-hua. Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory[J]. Chinese Journal of Luminescence, 2013,34(7): 935-939
郑改革, 詹煜, 曹焜, 徐林华. 亚波长金属光栅结构的制备与矢量衍射理论分析[J]. 发光学报, 2013,34(7): 935-939 DOI: 10.3788/fgxb20133407.0935.
ZHENG Gai-ge, ZHAN Yu, CAO Kun, XU Lin-hua. Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory[J]. Chinese Journal of Luminescence, 2013,34(7): 935-939 DOI: 10.3788/fgxb20133407.0935.
利用纳米压印结合溅射和反应离子刻蚀工艺制备了周期为1 m、占空比为0.2的亚波长金属光栅
利用紫外-可见-近红外光谱仪测量了光栅的0级反射光谱。在严格耦合波分析的基础上
把光栅区域电磁场的空间谐波通过勒让德多项式展开
使用多项式展开的谱分析法求解常微分方程
计算了该亚波长金属光栅的反射光谱及磁场分布。实验测量结果同矢量衍射理论计算结果都显示
该光栅在近红外、中红外波段具有表面等离子体共振现象。数值计算结果还表明
对于此类亚波长金属光栅
当光栅的深宽比增加时
其反射光谱中会出现更多的反射谷。
We fabricated a subwavelength metallic grating using nanoimprint technology and mea-sured the reflection spectrum using ultraviolet-visible-near-infrared spectrophotometer. Based on the theory of conventional rigorous coupled wave analysis
we used a new method to analyze the diffraction problems of subwavelength metallic gratings. We used fast Fourier factorization (FFF) method to derive the coupled wave equations
then each space harmonic can be expanded in terms of Legendre polynomials in grating region. Using this modified vector diffraction theory
we calculated the diffraction efficiency and the field distribution. All calculated results show great agreement with the experimental results.
Bai W L, Guo B S, Cai L K, et al. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings[J]. Acta Phys. Sinica (物理学报), 2009, 58(11):8021-8026 (in Chinese).[2] Yang Z L, Fang W J, Yang Y Q. Two-photon-excited fluorescence enhancement caused by surface plasmon enhanced exciting light[J]. Chin. J. Lumin.(发光学报), 2013, 34(2):240-244 (in Chinese).[3] Han J, Fan Y C, Zhang Z R. Propagation of surface plasmon polaritons in a ring resonator with PT-symmetry[J]. Chin. J. Lumin.(发光学报), 2012, 33(8):901-904 (in Chinese).[4] Dinesh A, Sumet H, Prashant T, et al. Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining[J]. Microsyst. Technol., 2009, 15:789-797.[5] Zhang X W, Ning Y Q, Qin L, et al. Polarization control of 980 nm high-power vertical-cavity surface-emitting lasers by using sub-wavelength metal-gratings[J]. Chin. J. Lumin.(发光学报), 2012, 33(9):1012-1017 (in Chinese).[6] Xiao X X, Chen Y G. Investigation of optical wave coupling between two subwavelengh slits in metallic sheet[J]. Chin. J. Lumin.(发光学报), 2009, 30(5):682-686 (in Chinese).[7] Liu J, Liu J, Wang Y T, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chin. Opt. (中国光学), 2011, 4(4):363-368 (in Chinese).[8] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. J. Opt. Soc. Am. A, 1981, 71(7):811-817.[9] Hooper I R, Sambles J R. Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces[J]. Phys. Rev. B, 2004, 70(4):045421-1-14.[10] Khavasi A, Jahromi A K, Mehrany K. Longitudinal Legendre polynomial expansion of electromagnetic fields for analysis of arbitrary-shaped gratings[J]. J. Opt. Soc. Am. A, 2008, 25(7):1564-1573.[11] Lynch D W. Hunter W R. Handbook of Optical Constants of Solids [M]. London: Academic Press, 1985:286-287.[12] Wang Y W, Liu M L, Liu R J, et al. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation[J]. Acta Phys. Sinica (物理学报), 2011, 60 (2): 024217 (in Chinese).
0
浏览量
80
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构