浏览全部资源
扫码关注微信
华南师范大学广东省微纳光子功能材料与器件重点实验室激光生命科学教育部重点实验室, 广东 广州 510631
收稿日期:2013-04-25,
修回日期:2013-05-24,
纸质出版日期:2013-07-10
移动端阅览
李国斌, 陈长水, 刘颂豪. In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N量子阱蓝光LED光电特性与量子阱束缚态能级的关系[J]. 发光学报, 2013,34(7): 911-917
LI Guo-bin, CHEN Chang-shui, LIU Song-hao. Relationship Between In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Quantum-well Blue LED&rsquo;s Photoelectric Properties and Quantum Well Bound State Energy Level[J]. Chinese Journal of Luminescence, 2013,34(7): 911-917
李国斌, 陈长水, 刘颂豪. In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N量子阱蓝光LED光电特性与量子阱束缚态能级的关系[J]. 发光学报, 2013,34(7): 911-917 DOI: 10.3788/fgxb20133407.0911.
LI Guo-bin, CHEN Chang-shui, LIU Song-hao. Relationship Between In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Quantum-well Blue LED&rsquo;s Photoelectric Properties and Quantum Well Bound State Energy Level[J]. Chinese Journal of Luminescence, 2013,34(7): 911-917 DOI: 10.3788/fgxb20133407.0911.
运用软件模拟和理论计算的方法分析了量子阱宽度的变化对量子阱束缚态能级与光电性能产生的影响
建立了束缚态分裂能级理论模型。分析结果表明:当量子阱宽较窄时
极化效应导致的能带弯曲是光谱红移的主要原因
而电子泄漏是导致效率下降的主要原因;当阱宽较大时
能级填充是导致光谱红移的主要原因
俄歇复合与载流子离域是导致效率下降的主要原因。由本文得出
当量子阱宽为2.5~3.5 nm时
InGaN/GaN发光二极管获得最大内量子效率与发光效率。
The software simulation and theoretical calculations are used to analysis the relationship between In
x
Ga
1-
x
N quantum well blue LED's photoelectric properties and quantum well bound state energy level. A bound state split level model is established. When the quantum well thickness is narrower
the band bending caused by the polarization effects is the main reason for the spectral red-shift
and electron leakage is the main reason for efficiency droop. But as the well width increase
level filling is the main reason for the red-shift of spectrum
Auger recombination and carrier delocalization are the main reason for lower efficiency. By this article
the optimization quantum well width for InGaN/GaN light-emitting diodes can be obtained. The maximum internal quantum efficiency and luminous efficiency can be obtained when the optimization quantum well width is 2.5~3.5 nm.
Li X, Okur S, Zhang F, et al. Improved quantum efficiency in InGaN light emitting diodes with multi-double-heterostructure active regions[J]. Appl. Phys. Lett., 2012, 101(4):041115-1-4.[2] Chen G C, Fan G H. Study on long-wavelength optical phonons in hexagonal InAlGaN crystals[J]. Chin. J. Lumin.(发光学报), 2012, 33(8):808-811 (in English).[3] Kioupakis E, Patrick R, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes[J]. Appl. Phys. Lett., 2011, 98(16):161107-1-3.[4] Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007, 91(14):141101-1-3.[5] Delaney K T, Patrick R, Kioupakis E, et al. Auger recombination rates in nitrides from first principles[J]. Appl. Phys. Lett., 2009, 94(19):191109-1-3.[6] Joachim P, Li S. Electron leakage effects on GaN-based light-emitting diodes[J]. Opt. Quant. Electron., 2011, 42(2):89-95.[7] Pope I A, Smowton P M. Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480 nm[J]. Appl. Phys. Lett., 2003, 82(17):2755-2757.[8] Mao A, Jaehee C. Reduction of efficiency droop in GaInN/GaN light-emitting diodes with thick AlGaN cladding layers[J]. Electron. Mater. Lett., 2012, 8(1):1-4.[9] Meyaard D S, Shan Q F, Dai Q, et al. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes[J]. Appl. Phys. Lett., 2011, 99(4):041112-1-3.[10] Bulashevich K A, Karpov S Y. Is Auger recombination responsible for the efficiency rollover in Ⅲ-nitride light-emitting diodes?[J]. Phys. Status Solidi (c), 2008, 5(6):2066-2069.[11] Xie J Q, Xian F N, Qian F, et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers[J]. Appl. Phys. Lett., 2008, 93(12):121107-1-3.[12] Kunzer M, Leancu C C, Maier M, et al. Well width dependent luminescence characteristics of UV-violet emitting GaInN QW LED structures[J]. Phys. Status Solidi (c), 2008, 5(6):2170-2172.[13] Reed M L, Readinger E D, Moe C G, et al. Benefits of negative polarization charge in n-InGaN on p-GaN single heterostructure light emitting diode with p-side down[J]. Phys. Status Solidi (c), 2009, 6(2):585-588.[14] Jaehee C, Euijoon Y, Wo J H, et al. Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature[J]. Electron. Mater. Lett., 2010, 6(2):51-53.[15] Kim A Y, Steigerwald D A, Wierer J J, et al. Performance of high-power AlInGaN Light emitting diodes[J]. Phys. Status Solidi (a), 2001, 188(1):15-21.[16] Efremov A A, Bochkareva N I, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs[J]. Semiconductors, 2006, 40(5):605-610.[17] Zeng K C, Li J Y, Lin H X, et al. Well-width dependence of the quantum efficiencies of GaN/AlxGa1-xN multiple quantum wells[J]. Appl. Phys. Lett., 2000, 76(21):3040-3042.[18] Smith M, Lin J Y, Jiang H X. Optical transitions in GaN/AlxGa1-xN multiple quantum wells grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 1996, 69(17):2453-2455.[19] Mair R A, Zeng K C, Lin J Y. Optical properties of GaN/AlGaN multiple quantum well microdisks[J]. Appl. Phys. Lett., 1997, 71(20):2898-2900.[20] Li Y L, Huang Y R, Lai Y H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness[J]. Appl. Phys. Lett., 2007, 91(18):181113-1-3.[21] Wu J, Walukiewicz W, Yu K M, et al. Small band gap bowing in InxGa1-xN alloys[J]. Appl. Phys. Lett., 2002, 80(25):4741-4743.[22] Levinshtein M E, Rumyantsev S L, Shur M S. Properties of Advanced Semiconductor Materials [M]. Chichester, UK:Wiley, 2001:7-8.[23] Lu H M, Chen G X. Influence of polarization effect on optoelectronic properties of InGaN/GaN multiple quantum well[J]. Chin. J. Lumin.(发光学报), 2011, 32(3):266-271 (in Chinese).
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构