浏览全部资源
扫码关注微信
1. 中国科学院光电研究院 北京,100094
2. 中国科学院大学材料科学与光电技术学院, 北京 100190
3. 北京国科世纪激光技术有限公司, 北京 100192
收稿日期:2013-05-17,
修回日期:2013-06-04,
纸质出版日期:2013-07-10
移动端阅览
王治昊, 余锦, 樊仲维, 葛文琦, 涂龙, 貊泽强, 郭广妍, 王昊成. 全固态被动调<em>Q</em>皮秒激光技术研究进展[J]. 发光学报, 2013,34(7): 900-910
WANG Zhi-hao, YU Jin, FAN Zhong-wei, GE Wen-qi, TU Long, MO Ze-qiang, GUO Guang-yan, WANG Hao-cheng. Research Progress of All-solid-state Passively <em>Q</em>-switched Picosecond Laser Technology[J]. Chinese Journal of Luminescence, 2013,34(7): 900-910
王治昊, 余锦, 樊仲维, 葛文琦, 涂龙, 貊泽强, 郭广妍, 王昊成. 全固态被动调<em>Q</em>皮秒激光技术研究进展[J]. 发光学报, 2013,34(7): 900-910 DOI: 10.3788/fgxb20133407.0900.
WANG Zhi-hao, YU Jin, FAN Zhong-wei, GE Wen-qi, TU Long, MO Ze-qiang, GUO Guang-yan, WANG Hao-cheng. Research Progress of All-solid-state Passively <em>Q</em>-switched Picosecond Laser Technology[J]. Chinese Journal of Luminescence, 2013,34(7): 900-910 DOI: 10.3788/fgxb20133407.0900.
全固态被动调
Q
激光技术在产生皮秒脉冲方面有较快发展。与锁模激光器相比
被动调
Q
皮秒激光器成本低、结构简单、易于校准光路
避免了锁模激光器结构复杂、机械敏感度高、光路校准困难等缺点
并且同样能够输出单脉冲能量可观、重频合适的皮秒量级短脉冲
因此拥有较高的实用价值。本文讨论了全固态被动调
Q
皮秒激光技术领域的两种典型技术路线以及对调
Q
皮秒脉冲输出的后续处理技术
包括非线性技术和激光放大技术等
并介绍了国内外相关研究团队在该领域所做的工作及其突破性进展。
In recent years
all-solid-state passively
Q
-switched laser technology gets a rapid progress in obtaining picosecond pulses. Comparing with mode-locked lasers with complicated structure
sensitive and difficult alignment
these
Q
-switched picosecond lasers show great practical potentials for their characters of low cost
simple structure and easy alignment. These
Q
-switched lasers can provide picosecond pulses with considerable energy
and with the advantage of adjustable pulse repetition rate. In this paper
two existing passively
Q
-switched picosecond laser approaches
namely
Cr:YAG microchip lasers
semiconductor saturable absorber mirror(SESAM) microchip lasers
are discussed accompany with the consideration of further treatment to the latter one by nonlinear optical processing and amplification
which are introduced to get narrower pulse width and higher pulse energy. In two categories
we review remarkable work in this field along with breakthroughs of them.
Baird B W. Picosecond laser processing of semiconductor and thin film devices[J]. SPIE, 2010, 7580:75800Q-1-9.[2] Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Appl. Phys. A, 2012, 108(4):863-869.[3] Muhammad N, Whitehead D, Boor A, et al. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications[J]. Appl. Phys. A, 2012, 106(3):607-617.[4] Ejdrup T, Lemke H T, Haldrup K, et al. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector[J]. J. Synchrotron. Rad., 2009, 16(3):387-390.[5] Franjic K, Cowan M L, Kraemer D, et al. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations[J]. Opt. Exp., 2009, 17(25):22937-22959.[6] Malcolm G P A, Ferguson A I. Mode-locking of diode laser-pumped solid-state lasers[J]. Opt. Quant. Electron., 1992, 24(7):705-717.[7] Kafka J D, Watts M L, Pieterse J W J. Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti:sapphire laser[J]. IEEE J. Quant. Electron., 1992, 28(10):2151-2162.[8] Takada A, Miyazawa H. 30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser[J]. Electron. Lett., 1990, 26(3):216-217.[9] Gong M, Yu H, Wushouer X, et al. Passively mode-locked Nd:YVO4 picosecond laser with oblique incidence on SESAM[J]. Laser Phys. Lett., 2008, 5(7):514-517.[10] Hellwarth R W. Advances in Quantum Electronics [M]. New York: Columbia Press, 1961.[11] McClung F J, Hellwarth R W. Giant optical pulsations from ruby[J]. Appl. Opt., 1962, 1(S1):103-105.[12] Koechner W. Solid-State Laser Engineering [M]. Berlin: Springer, 2006:522-525.[13] Zayhowski J J, Dill C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Opt. Lett., 1994, 19(18):1427-1429.[14] Zayhowski J J, Ochoa J, Dill C. Ultraviolet generation with passively Q-switched microchip lasers[J]. Opt. Lett., 1996, 21(8):588-590.[15] Wang P, Zhou S H, Lee K K, et al. Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser[J]. Opt. Commun., 1995, 114(5/6):439-441.[16] Zhou S H, Lee K K, Chen Y C, et al. Monolithic self-Q-switched Cr, Nd:YAG laser[J]. Opt. Lett., 1993, 18(7):511-512.[17] Siegman A E. Lasers[M]. Mill Valley: University Science Books, 1986:1008-1019.[18] Zayhowski J J, Dill C, Cook C, et al. Mid-and high-power passively Q-switched microchip lasers[C]//OSA TOPS 26, Advanced Solid-State Lasers, Boston, Massachusetts, 1999:TuC1.[19] Degnan J J, McGarry J F. Eye-safe and autonomous single-photoelectron satellite laser ranging at kilohertz rates[J]. SPIE, 1997, 3218:63-77.[20] Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:An antiresonant semiconductor Fabry-Perot saturable absorber[J]. Opt. Lett., 1992, 17(7):505-507.[21] Keller U. Ultrafast all-solid-state laser technology[J]. Appl. Phys. B, 1994, 58(5):347-363.[22] Braun B, Keller U. Single-frequency Q-switched ring laser with an antiresonant Fabry-Perot saturable absorber[J]. Opt. Lett., 1995, 20(9):1020-1022.[23] Braun B, Krtner F X, Keller U, et al. Passively Q-switched 180-ps Nd:LaSc3(BO3)4 microchip laser[J]. Opt. Lett., 1996, 21(6):405-407.[24] Kutovoi S A, Laptev V V, Matsnev S Y. Lanthanum scandoborate as a new highly efficient active medium of solid-state lasers[J]. Sov. J. Quant. Electron., 1991, 21(2):131-132.[25] Beier B, Meyn JP, Knappe R, et al. A 180 mW Nd:LaSc3(BO3)4 Single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array[J]. Appl. Phys. B, 1994, 58(5):381-388.[26] Meyn J P, Jensen T, Huber G. Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate[J]. IEEE J. Quant. Electron.,1994, 30(4):913-917.[27] Braun B, Krtner F X, Zhang G, et al. 56-ps passively Q-switched diode-pumped microchip laser[J]. Opt. Lett., 1997, 22(6):381-383.[28] Brovelli L R, Keller U, Chiu T H. Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers[J]. J. Opt. Soc. Am. B, 1995, 12(2):311-322.[29] Fluck R, Braun B, Gini E, et al. Passively Q-switched 1.34-m Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors[J]. Opt. Lett., 1997, 22(13):991-993.[30] Sphler G J, Paschotta R, Fluck R, et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J]. J. Opt. Soc. Am. B, 1999, 16(3):376-388.[31] Zayhowski J J. Passively Q-switched Nd:YAG microchip lasers and applications.[J]. J. Alloy Compd., 2000, 303/304(2):393-400.[32] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media.[J]. Opt. Lett., 1994, 19(17):1343-1345.[33] Sphler G J, Paschotta R, Kullberg M P, et al. A passively Q-switched Yb:YAG microchip laser.[J]. Appl. Phys. B, 2001, 72(3):285-287.[34] Nodop D, Limpert J, Hohmuth R, et al. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.[J]. Opt. Lett., 2007, 32(15):2115-2117.[35] Steinmetz A, Nodop D, Limpert J, et al. 2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser[J]. Appl. Phys. B, 2009, 97(2):317-320.[36] Winful H G. Pulse compression in optical fiber filters[J]. Appl. Phys. Lett., 1985, 46(6):527-529.[37] Eggleton B J, Slusher R E, Sterke C M, et al. Bragg grating solitons[J]. Phys. Rev. Lett., 1996, 76(10):1627-1630.[38] Eggleton B J, Sterke C M, Aceves A B, et al. Modulational instability and tunable multiple soliton generation in apodized fiber gratings.[J]. Opt. Commun., 1998, 14(4/5/6):267-271.[39] Mollenauer L F, Stolen R H, Gordon J P, et al. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers[J]. Opt. Lett., 1983, 8(5):289-291.[40] Shank C V, Fork R L, Yen R, et al. Compression of femtosecond optical pulses.[J]. Appl. Phys. Lett., 1982, 40(9):761-763.[41] Mok J T, Littler C M, Tsoy E, et al. Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings[J]. Opt. Lett., 2005, 30(18):2457-2459.[42] Eggleton B J, Sterke C M, Slusher R E. Bragg solitons in the nonlinear Schr?dinger limit:experiment and theory[J]. J. Opt. Soc. Am. B, 1999, 16(4):587-599.[43] Agrawal G P. Nonlinear Fiber Optics [M]. San Diego: Academic Press, 2001:97-130.[44] Dianov E M, Nikonova Z S, Prokhorov A M, et al. Optimal compression of multisoliton pulses in fiber-optic waveguides[J]. Sov. Tech. Phys. Lett., 1986, 12:756-760.[45] Nodop D, Schmidt O, Limpert J, et al. 105 kHz, 85 ps, 3 MW microchip laser fiber amplifier system for micro-machining applications//CLEO/QELS, San Jose, California, 2008:1-2.[46] Dausinger F, Hgel H, Konov V. Micromachining with ultrashort laser pulses:from basic understanding to technical applications[J]. SPIE, 2003, 5147:106-115.[47] Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses[J]. J. Opt. Soc. Am. B, 1997, 14(10):2716-2722.[48] Steinmetz A, Nodop D, Martin A, et al. Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding.[J]. Opt. Lett., 2010, 35(17):2885-2887.[49] Khurgin J B, Jin F, Solyar G, et al. Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses[J]. Appl. Opt., 2002, 41(6):1095-1097.[50] Nodop D, Rothhardt J, Hdrich S, et al. Wavelength-independent all-optical synchronization of a Q-switched 100-ps microchip laser to a femtosecond laser reference source[J]. Appl. Phys., 2009, 94(3):399-401.[51] Cole B, Goldberg L, Trussell CW, et al. Reduction of timing jitter in a Q-switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber[J].Opt. Exp., 2009, 17(3):1766-1771.[52] Calvani R, Cisternino F, Girardi R, et al. All-fiber self-injection seeding for optical timing jitter reduction in a chirp compensated gain-switched DFB laser[J]. Fiber & Integrated Opt., 1999, 18(1):33-40.[53] Steinmetz A, Eidam T, Nodop D, et al. Nonlinear compression of Q-switched laser pulses to the realm of ultrashort durations[J]. Opt. Exp., 2011, 19(4):3758-3764.[54] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat. Mater., 2002, 1(4):217-224.[55] Chen X, Liu X. Short pulsed laser machining:How short is short enough?[J]. J. Laser Appl., 1999, 11(6):268-272.[56] Steinmetz A, Jansen F, Stutzki F, et al. Sub-5 ps, multime gawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser[J]. Opt. Lett., 2012, 37(13):2550-2552.[57] Stutzki F, Jansen F, Eidam T, et al. High average power large-pitch fiber amplifier with robust single-mode operation[J]. Opt. Lett., 2011, 36(5):689-691.[58] Lehneis R, Steinmetz A, Jauregui C, et al. Dispersion-free pulse duration reduction of passively Q-switched microchip lasers[J]. Opt. Lett., 2012, 37(21):4401-4403.[59] Doutre F, Pagnoux D, Couderc V, et al. Shortening pulses from subnanosecond to picosecond by means of ultrafast temporal filtering in an optical fiber[J]. Opt. Lett., 2009, 34(14):2087-2089.
0
浏览量
99
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构