浏览全部资源
扫码关注微信
天津理工大学材料物理研究所显示材料与光电器件省部共建教育部重点实验室 天津,300384
收稿日期:2013-04-18,
修回日期:2013-05-06,
纸质出版日期:2013-07-10
移动端阅览
陈义鹏, 辛传祯, 罗程远, 王丽师, 葛林, 张晓松, 徐建萍, 李岚. PVK空穴传输层对Ndq<sub>3</sub>近红外发光二极管性能的影响[J]. 发光学报, 2013,34(7): 888-893
CHEN Yi-peng, XIN Chuan-zhen, LUO Cheng-yuan, WANG Li-shi, GE-Lin, ZHANG Xiao-song, XU Jian-ping, LI Lan. Influence of PVK Hole Transport Layer on Ndq<sub>3</sub> Near-infrared Organic Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(7): 888-893
陈义鹏, 辛传祯, 罗程远, 王丽师, 葛林, 张晓松, 徐建萍, 李岚. PVK空穴传输层对Ndq<sub>3</sub>近红外发光二极管性能的影响[J]. 发光学报, 2013,34(7): 888-893 DOI: 10.3788/fgxb20133407.0888.
CHEN Yi-peng, XIN Chuan-zhen, LUO Cheng-yuan, WANG Li-shi, GE-Lin, ZHANG Xiao-song, XU Jian-ping, LI Lan. Influence of PVK Hole Transport Layer on Ndq<sub>3</sub> Near-infrared Organic Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(7): 888-893 DOI: 10.3788/fgxb20133407.0888.
以PEDOT:PSS作为空穴注入层
聚合物PVK作为空穴传输层
制备了结构为ITO/PEDOT:PSS/PVK/8-羟基 喹啉钕(Ndq
3
)/Al的近红外OLED
研究了PVK与PEDOT:PSS功能层对器件
I-V
特性和EL光谱的影响。结果显示
在EL光谱中的905
1 064
1 340 nm处均观察到了荧光发射
分别对应于Nd
3+
的
4
F
3/2
4
I
9/2
、
4
F
3/2
4
I
11/2
和
4
F
3/2
4
I
13/2
能级跃迁。与参考器件对比分析认为
PEDOT:PSS高的导电性降低了器件的串联电阻
增大了器件的工作电流;PVK与PEDOT:PSS共同降低了空穴的注入势垒
实现了Ndq
3
发光层区域的载流子的注入平衡并改善了器件的发射强度。此外
PVK有效降低了ITO电极表面粗糙度
也是器件性能提高的原因之一。
A three-layered near-infrared OLED with structure of ITO/PEDOT:PSS/PVK/neodymium tris-(8-hydroxyquinoline) (Ndq
3
)/Al was fabricated
in which poly(N-vinylcarbazole) (PVK) was hole transport layer
and poly(3
4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) was hole injection layer. The EL spectrum shows three emission peaks at 905
1 064
1 340 nm in the near-infrared range which are correspond to Nd
3+
transitions of
4
F
3/2
4
I
9/2
4
F
3/2
4
I
11/2
4
F
3/2
4
I
13/2
respectively. The influence mechanism of functional layers was discussed with help of
I-V
curves
in reference with single layer device (ITO/Ndq
3
/Al) and double layer device (ITO/PVK/Ndq
3
/Al). The increase in device current corresponding to the reduction of the series resistance was observed and was related to the high conductivity of PEDOT:PSS layer. The joint action on the hole injection barrier by PVK and PEDOT:PSS was contributed to the improvement of the charge carriers balance of device and EL emission intensity. Also
the decrease of the ITO surface roughness was realized as one of the key issue for the performance improvement.
Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12):913-915.[2] Liu A H, Yang L Y. Improved performance of organic light emitting diodes using combined hole-injecting layer[J]. Chin. J. Lumin. (发光学报), 2012, 33(4):422-427 (in Chinese).[3] Tu A G, Zhou X. OLEDs with Au/MoO3 hole injection layer[J]. Chin. J. Lumin. (发光学报), 2010, 31(2):157-160 (in Chinese).[4] Giebeler C, Antoniadis H, Bradley D D C, et al. Influence of the hole transport layer on the performance of organic light-emitting diodes[J]. J. Appl. Phys., 1999, 85(1):608-615.[5] Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nat. Photon., 2008, 2(4):247-250.[6] Katkova M A, Ilichev V A, Konev A N, et al. Modification of anode surface in organic light-emitting diodes by chalcogenes[J]. Appl. Surf. Sci., 2008, 254(8):2216-2219.[7] Stouwdam J W, Janssen R A J. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers[J]. J. Mater. Chem., 2008, 18(16):1889-1894.[8] Sun L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nat. Nanotechnol., 2012, 7(6):369-373.[9] Katkova M A, Pushkarev A P, Balashova T V, et al. Near-infrared electroluminescent lanthanide N, O-chelated complexes for organic light-emitting devices[J]. J. Mater. Chem., 2011, 21(41):16611-16620.[10] Kido J, Okamoto Y. Organo lanthanide metal complexes for electroluminescent materials[J]. Chem. Rev., 2002, 102(6):2357-2368.[11] Faulkner S, Pope S J, Burton-Pye B P. Lanthanide complexes for luminescence imaging applications[J]. Appl. Spectrosc., 2005, 40(1):1-31.[12] Li F Y, Yang H, Hu H. Rare Earth Coordination Chemistry: Fundamentals and Applications [M]. Asia: Wiley, 2010:529-570.[13] Curry R J, Gillin W P. Electroluminescence of organolanthanide based organic light emitting diodes[J]. Curr. Opin. Solid State Mater. Sci., 2001, 5(6):481-486.[14] Khreis O M, Curry R J, Somerton M, et al. Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. J. Appl. Phys., 2000, 88(2):777-780.[15] Zainelabdin A, Zaman S, Amin G, et al. Optical and current transport properties of CuO/ZnO nanocoral p-n heterostructure hydrothermally synthesized at low temperature[J]. Appl. Phys. A, 2012, 108(4):921-928.[16] Liu J, Ahn Y H, Park J Y, et al. Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires[J]. Nanotechnol., 2009, 20(44):445203-1-18.
0
浏览量
78
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构