浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院大学 北京,100049
3. 东北师范大学物理学院, 吉林 长春 130024
收稿日期:2013-03-22,
修回日期:2013-05-02,
纸质出版日期:2013-07-10
移动端阅览
尚开, 张振中, 李炳辉, 徐海阳, 张立功, 赵东旭, 刘雷, 王双鹏, 申德振. 非对称ZnO/ZnMgO双量子阱内量子效率的提高[J]. 发光学报, 2013,34(7): 872-876
SHANG Kai, ZHANG Zhen-zhong, LI Bing-hui, XU Hai-yang, ZHANG Li-gong, ZHAO Dong-xu, LIU Lei, WANG Shuang-peng, SHEN De-zhen. Improvement of Internal Quantum Efficiency of Asymmetric ZnO/ZnMgO Multi-quantum Wells[J]. Chinese Journal of Luminescence, 2013,34(7): 872-876
尚开, 张振中, 李炳辉, 徐海阳, 张立功, 赵东旭, 刘雷, 王双鹏, 申德振. 非对称ZnO/ZnMgO双量子阱内量子效率的提高[J]. 发光学报, 2013,34(7): 872-876 DOI: 10.3788/fgxb20133407.0872.
SHANG Kai, ZHANG Zhen-zhong, LI Bing-hui, XU Hai-yang, ZHANG Li-gong, ZHAO Dong-xu, LIU Lei, WANG Shuang-peng, SHEN De-zhen. Improvement of Internal Quantum Efficiency of Asymmetric ZnO/ZnMgO Multi-quantum Wells[J]. Chinese Journal of Luminescence, 2013,34(7): 872-876 DOI: 10.3788/fgxb20133407.0872.
在
c
-plane面蓝宝石衬底上生长了ZnO/Zn
0.85
Mg
0.15
O非对称双量子阱
其内量子效率相对于对称量子阱有了显著的提高。ZnO/Zn
0.85
Mg
0.15
O 的10周期对称量子阱和5周期非对称双量子阱都是利用等离子体辅助分子束外延技术制备的。ZnO/Zn
0.85
Mg
0.15
O非对称双量子阱的内量子效率提高至对称阱的1.56倍。时间分辨光谱和光致发光谱测试结果证实
在ZnO/Zn
0.85
Mg
0.15
O非对称双量子阱中存在从窄阱到宽阱的激子隧穿过程
这是内量子效率提高的主要原因。
We report a dramatic increase in the internal quantum efficiency (IQE) of ZnO/ZnMgO multi-quantum wells (MQWs) fabricated on
c
-plane sapphire substrate by introducing asymmetric double-quantum-well (ADQW) structure. A marked enhancement in efficiency
by as much as 1.56 times
was observed for the ZnO/ZnMgO five-period ADQW grown by plasma-assisted molecular beam epitaxy (P-MBE)
compared to the ten-period symmetrical MQWs with asymmetric structure. The effects of excitons tunneling from the narrow well to the wide well
which was proved by photoluminescence spectra and time-resolved photoluminescence spectroscopy
can influence the IQE.
Oto T, Banal R G, Kataoka K, et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam[J]. Nat. Photon., 2010, 4:767-771.[2] Watanabe K, Taniguchi T, Niiyama T, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride[J]. Nat. Photon., 2009, 3:591-594.[3] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat. Mater., 2004, 3:404-409.[4] Thierry R, Perillat-Merceroz G, Jouneau P H, et al. Core-shell multi-quantum wells in ZnO/ZnMgO nanowires with high optical efficiency at room temperature[J]. Nanotechonl., 2012, 23(1):1-6.[5] Park S H, Ahn R. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers[J]. Appl. Phys. Lett., 2005, 87(25):253509-1-3.[6] Kwon M K, Kim J Y, Park I K, et al. Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal[J]. Appl. Phys. Lett., 2008, 92(25):251110-1-3.[7] Ye J D, Pannirselvam S, Lim S T, et al. Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy[J]. Appl. Phys. Lett., 2010, 97(11):111908-1-3.[8] Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Appl. Phys. Exp., 2010, (3):031002-1-3.[9] Yu G Y, Fan X W, Zhang J Y, et al. The exciton tunneling in ZnCdSe/ZnSe asymmetric double quantum well[J]. J. Electron. Mater., 1998, 27(9):1007-1009.[10] Yu G Y, Fan X W, Zhang J Y, et al. Laser action in ZnCdSe/ZnSe asymmetric double-quantum-well[J]. Solid State Commun., 1999, 110(1):127-130.[11] Chen J, A L, Aichele C, et al. High internal quantum efficiency ZnO nanorods prepared at low temperature[J]. Appl. Phys. Lett., 2008, 92(16):161906-1-3.[12] Nelson D F, Miller R C, Kleinman D A, et al. Tunneling-assisted photon emission from quantum wells[J]. Phys. Rev. B, 1986, 34(12):8671-8675.[13] Li S M, Kwon B J, Kwack H S, et al. Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates[J]. Appl. Phys. Lett., 2010, 107(3):03513-1-3.[14] Su S C, Lu Y M, Zhang Z Z, et al. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by X-ray photoelectron spectroscopy[J]. Appl. Phys. Lett., 2008, 93(8):082108-1-8.[15] Sun J W, Lu Y M, Liu Y C, et al. Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate[J]. J. Phys. D, 2007, 40(21):6541-6544.[16] Wei Z P, Lu Y M, Shen D Z, et al. Effect of interface on luminescence properties in ZnO/MgZnO heterostructures[J]. J. Lumin., 2006, 119/120:551-555.[17] Krol M F, Ten S, Hayduk M J, et al. Subpicosecond hole tunneling by nonresonant delocalization in asymmetric double quantum wells[J]. Phys. Rev. B, 1995, 52(20):R14344-R14347.[18] Kim D K, Citrin D S. Frequency and amplitude modulation in terahertz-sideband generation in quantum wells[J]. Appl. Phys. Lett., 2007, 94(2):021105-1-3.[19] Krol M F, Leavitt R P, Pham J T, et al. Enhanced electroabsorption in selectively doped (Ga,In)As/(Al,In)As asymmetric double quantum wells[J]. Appl. Phys. Lett., 1995, 66(22):3045-3047.
0
浏览量
180
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构