浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 长春理工大学,吉林 长春,中国,130022
收稿日期:2013-03-02,
修回日期:2012-04-13,
纸质出版日期:2013-06-10
移动端阅览
金辉, 姜会林, 郑玉权, 张晓辉, 崔继承. 用于农田土壤监测的高光谱成像仪[J]. 发光学报, 2013,34(6): 807-810
JIN Hui, JIANG Hui-lin, ZHENG Yu-quan, ZHANG Xiao-hui, CUI Ji-cheng. Hyperspectral Imager for Farmland Soil Monitoring[J]. Chinese Journal of Luminescence, 2013,34(6): 807-810
金辉, 姜会林, 郑玉权, 张晓辉, 崔继承. 用于农田土壤监测的高光谱成像仪[J]. 发光学报, 2013,34(6): 807-810 DOI: 10.3788/fgxb20133406.0807.
JIN Hui, JIANG Hui-lin, ZHENG Yu-quan, ZHANG Xiao-hui, CUI Ji-cheng. Hyperspectral Imager for Farmland Soil Monitoring[J]. Chinese Journal of Luminescence, 2013,34(6): 807-810 DOI: 10.3788/fgxb20133406.0807.
土壤光谱分析技术具有分析速度快、成本低、无危险、无破坏、可同时反演多种成分等特点
基于高光谱成像技术可以快速获取土壤性质及其空间分布特征。本文针对农田土壤监测的需求
设计了一种无人机载高光谱成像仪
选择Offner凸光栅光谱成像系统实现了无谱线弯曲和无色畸变的设计结果。400~1 000 nm波长范围内的衍射效率为15%~30%
对地成像效果清晰
在3 km飞行高度可以获得覆盖宽度为0.6 km、地面分辨率为0.6 m的地物目标高光谱图像
可提供0.4~1.0 m波长范围内120个谱段的高光谱图像
光谱数据准确、稳定。结果表明
该高光谱成像仪满足设计要求且可以快速获得高精度成像光谱信息
适合用于对农田土壤的监测。
Soil spectral analysis technology has features of fast analysis speed
low cost
no risk
no damage
and it can inverse a variety of ingredients at the same time. Based on hyper-spectral imaging technology
we can quickly obtain soil properties and its spatial distribution characteristics. In this paper
we design a UAV hyper-spectral imager based on the demand of farmland soil monitoring. The Offner convex grating spectral imaging system was selected to achieve non-spectral line bending and colorless distortion design results. The diffraction efficiency is 15%~30% in the range of 400~1 000 nm wavelength. The ground imaging results are clear
it can obtain hyper-spectral images of ground target of covering a width of 0.6 km and ground resolution of 0.6 m at 3 km altitude. It provides 120 spectral bands of hyper-spectral images at the wavelength range of 0.4~1.0 m. The spectral data are accurate and stable. The results show that this hyper-spectral imager meets the design requirements and can quickly obtain the high-precision imaging spectra of the agricultural soils
thus achieving the monitoring of farmland soil.
O'neal A M. The effect of moisture on the color of certain Iowa soils[J]. American Soil Survey Association Bulletin,1927(B8):158-174.[2] Zheng Y Q, Yu B X. Overview of spectrum-dividing technologies in imaging spectrometers[J]. J. Remote Sensing (遥感学报),2002, 6(1):75-80 (in Chinese).[3] Galvo L S, Formaggio A R, Couto E G, et al. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data[J]. ISPRS J. Photogrammetry and Remote Sensing,2008, 63(2):259-271.[4] Selige T, Bhner J, Schmidhalter U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regressionmodeling procedures[J]. Geoderma, 2006, 136(1/2):235-244.[5] Gomez C, Rossel R A V, McBratney A B. Soil organiccarbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: An Australian case study[J]. Geoderma,2008, 146(3/4):403-411.[6] Qi X D, Han P P, Pan M Z, et al. Spectral calibration of imaging spectrometer with convex grating[J]. Opt. Precision Eng.(光学 精密工程),2011, 19(12):2870-2876 (in Chinese).[7] Zheng Y Q. Precise spectral calibration for hyperspectral imager[J]. Opt. Precision Eng.(光学 精密工程),2010, 18(11):2347-2354 (in Chinese).[8] Zheng Y Q. Design of compact Offner spectral imaging system[J]. Opt. Precision Eng.(光学 精密工程),2005, 13(3):650-657 (in Chinese).
0
浏览量
116
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构