浏览全部资源
扫码关注微信
1. 湖南大学 信息科学与工程学院,湖南 长沙,410082
2. 湖南大学 物理与微电子科学学院,湖南 长沙,410082
收稿日期:2013-03-20,
修回日期:2013-04-17,
纸质出版日期:2013-06-10
移动端阅览
蔡剑锐, 段辉高, 王太宏. Au/Ag纳米颗粒的成像技术与应用[J]. 发光学报, 2013,34(6): 792-796
CAI Jian-rui, DUAN Hui-gao, WANG Tai-hong. Imaging Techniques and Applications of The Au/Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(6): 792-796
蔡剑锐, 段辉高, 王太宏. Au/Ag纳米颗粒的成像技术与应用[J]. 发光学报, 2013,34(6): 792-796 DOI: 10.3788/fgxb20133406.0792.
CAI Jian-rui, DUAN Hui-gao, WANG Tai-hong. Imaging Techniques and Applications of The Au/Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(6): 792-796 DOI: 10.3788/fgxb20133406.0792.
基于10 nm尺度图形加工技术
通过改变金属纳米结构的大小和形貌
利用金属纳米结构的表面等离子体共振性能开发出SEM纳米彩色图片制作技术
使得图形的像素在60 nm尺度可控(约100万dpi)。利用图像处理技术可以快速生成加工版图
而通过电子束曝光和沉积技术则能够得到结构不同的Au/Ag纳米颗粒。结果表明:由于结构不同的Au/Ag纳米颗粒的表面等离子体共振性能不同
使其发光性能覆盖了可见光波段。本文通过改变Au/Ag纳米颗粒的大小
利用图像处理算法对不同大小的Au/Ag纳米颗粒进行排列组合
从而得到SEM纳米彩色图片。
Based on the 10 nm scale image processing technology and the surface plasmon resonance properties of metal nanostructures
the colorful SEM microimages can be printed by changing the size and the morphology of the metal nanostructures. As the results
the graphics pixel can be controlled in 60 nm scale (about 1 million dpi). Furthermore
using the image processing technology
the objective image can be generated faster than before and this will benefit the industrial production because of the artificial intelligent. While using the electron-beam lithography (EBL) and the deposition technology
the different structures of the Au/Ag nanoparticles can be accurately generated. And according to this paper
the results show that different structures of the Au/Ag nanoparticles can carry different surface plasmon resonance properties so that the luminescent properties of these nanoparticles can cover the visible wavelengths. In this paper
using four same size nanoparticles to represent one color can enhance the consistency between pixels. The luminescent properties of these nanoparticles will be shown by changing the size of the Au/Ag nanoparticles. And the colorful SEM microimages will also be generated while using the image processing algorithms for the permutation and combination of the different size of the Au/Ag nanoparticles.
Kumar K, Duan H G, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nat. Nanotechnol., 2012, 7(7):557-561.[2] Finlayson C E, Spahn P, Snoswell D R E, et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing[J]. Adv. Mater., 2011, 23(13):1540-1544.[3] Haverinen H M, Myllyla R A, Jaboue G E. Inkjet printing of light emitting quantum dots[J]. Appl. Phys. Lett.,2009, 94(7):073108-1-3.[4] Kim T H, Cho K S, Lee E K, et al. Full-color quantum dot displays fabricated by transfer printing[J]. Nat. Photon.,2011, 5(5):176-182.[5] Lee S Y, Forestiere C, Pasquale A J, et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays[J]. Opt. Exp., 2011, 19(24):23818-23830.[6] Ozaki M, Kato J, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science,2011, 332(5):218-220.[7] Xu T, Shi H, Wu Y K, et al. Structural colors: From plasmonic to carbon nanostructures[J]. Small, 2011, 7(22):3128-3136.[8] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Opt. Exp., 2010, 18(13):14056-14062.[9] Inoue D, Miura A, Nomura T, et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes[J]. Appl. Phys. Lett.,2011, 98(9):093113-1-3.[10] Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nat. Commun.,2010, 1:1-5.[11] Hu H L, Duan H G, Yang J K W, et al. Plasmon-modulated photoluminescence of individual gold nanostructures[J]. ACS Nano,2012, 6(11):10147-10155.
0
浏览量
163
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构